The Cloud Operating Model
Mainstream Trends
Cloud

Microservices

Schedulers
Benefits:

- Can be highly automated
- Globally distributed
- High-value services
- Low-cost experimentation
- Not using it? Don't pay for it.
Microservices

Benefits:

- Less surface area means higher quality
- Development parallelizes nicely
- Can update small parts of a large system
- Improved security and access control
Cloud

Microservices

Schedulers
Schedulers

Benefits:

- High resource utilization
- Uniform application deployment across different workloads
- Automatic failure recovery
- Easy scale-out of underlying resources
Cloud

Microservices

Schedulers
The Cloud Operating Model

- **Networking**
 - Infrastructure & Applications

- **Development**
 - Deploy Applications

- **Security**
 - Secure Infra & Applications

- **Operations**
 - Provision Infrastructure
The Cloud Operating Model

Traditional "Static" Model

Cloud "Dynamic" Model
The Cloud Operating Model

Operations
Provision Infrastructure

Traditional "Static" Model
- Dedicated Servers, Homogeneous
- Limited Scale

Cloud "Dynamic" Model
- On Demand, Heterogeneous
- Infinite Scale
The Cloud Operating Model

Operations
Provision Infrastructure

Security
Secure Infra & Applications

Traditional "Static" Model
- Dedicated Servers, Homogeneous
- Limited Scale
- Clear Perimeter, High Trust
- IP-based Security

Cloud "Dynamic" Model
- On Demand, Heterogeneous
- Infinite Scale
- No Perimeter, 'Low Trust'
- Identity-based Security
The Cloud Operating Model

Operations
Provision Infrastructure

- Dedicated Servers, Homogeneous
- Limited Scale

Security
Secure Infra & Applications

- Clear Perimeter, High Trust
- IP-based Security

Networking
Infrastructure & Applications

- Host-based
- Static IP addresses

Traditional "Static" Model

Cloud "Dynamic" Model

- On Demand, Heterogeneous
- Infinite Scale

- No Perimeter, 'Low Trust'
- **Identity-based** Security

- Service-based
- Dynamic IP addresses
The Cloud Operating Model

Operations
Provision Infrastructure

Security
Secure Infra & Applications

Networking
Infrastructure & Applications

Development
Deploy Applications

Traditional "Static" Model
- Dedicated Servers, Homogeneous
- Limited Scale
- Clear Perimeter, High Trust
- IP-based Security
- Host-based
- Static IP addresses
- Apps on Dedicated Infrastructure

Cloud "Dynamic" Model
- On Demand, Heterogeneous
- Infinite Scale
- No Perimeter, 'Low Trust'
- **Identity-based** Security
- Service-based
- Dynamic IP addresses
- Apps Scheduled Across Fleet
The Cloud Operating Model

Traditional "Static" Model
- **Operations**
 - Provision Infrastructure
- **Security**
 - Secure Infra & Applications
- **Networking**
 - Infrastructure & Applications
- **Development**
 - Deploy Applications

- Dedicated Servers, Homogeneous
- Limited Scale
- Clear Perimeter, High Trust
- IP-based Security
- Host-based
- Static IP addresses
- Apps on Dedicated Infrastructure

Cloud "Dynamic" Model
- On Demand, Heterogeneous
- Infinite Scale
- No Perimeter, 'Low Trust'
- **Identity-based** Security
- Service-based
- Dynamic IP addresses
- Apps Scheduled Across Fleet
The Cloud Operating Model

- On Demand, Heterogeneous
- Infinite Scale

- Clear Perimeter, High Trust
- IP-based Security

- Host-based
- Static IP addresses

- Apps on Dedicated Infrastructure

Result:
- Too many VPCs, routing tables, security groups.
- Too many servers since applications are not being scheduled.
- Bottlenecks in security, deployment
The Cloud Operating Model

Operations
Provision Infrastructure

Security
Secure Infra & Applications

Networking
Infrastructure & Applications

Development
Deploy Applications

Traditional "Static" Model
- Dedicated Servers, Homogeneous
- Limited Scale
- Clear Perimeter, High Trust
- IP-based Security
- Host-based
- Static IP addresses
- Apps on Dedicated Infrastructure

Cloud "Dynamic" Model
- On Demand, Heterogeneous
- Infinite Scale
- No Perimeter, 'Low Trust'
- Identity-based Security
- Service-based
- Dynamic IP addresses
- Apps Scheduled Across Fleet
The Cloud Operating Model

Operations
Provision Infrastructure

- Dedicated Servers, Homogeneous
- Limited Scale

Security
Secure Infra & Applications

- Clear Perimeter, High Trust
- IP-based Security

Networking
Infrastructure & Applications

- Host-based
- Static IP addresses

Development
Deploy Applications

- Apps on Dedicated Infrastructure

Traditional "Static" Model

Cloud "Dynamic" Model

- On Demand, Heterogeneous
- Infinite Scale

- No Perimeter, 'Low Trust'
- Identity-based Security

- Service-based
- Dynamic IP addresses

- Apps Scheduled Across Fleet
The Cloud Operating Model

Result:
- Extremely slow infrastructure or application deliveries because security will be struggling to maintain IP-based security.
- Poor resource utilization as applications are stuck on specific nodes.
- Security risks from over-trusting internal traffic.

- On Demand, Heterogeneous
 - Infinite Scale

- Clear Perimeter, High Trust
 - IP-based Security

- Service-based
 - Dynamic IP addresses

- Apps Scheduled Across Fleet
The Cloud Operating Model

Traditional "Static" Model
- **Operations**
 - Provision Infrastructure
- **Security**
 - Secure Infra & Applications
- **Networking**
 - Infrastructure & Applications
- **Development**
 - Deploy Applications

- Dedicated Servers, Homogeneous
- Clear Perimeter, High Trust
- Host-based
- Apps on Dedicated Infrastructure

Cloud "Dynamic" Model
- On Demand, Heterogeneous
- No Perimeter, 'Low Trust'
- Service-based
- Apps Scheduled Across Fleet

- Limited Scale
- IP-based Security
- Static IP addresses
- Apps Scheduled Across Fleet
OSS Enables The Cloud Operating Model

- Networking
 Infrastructure & Applications
- Development
 Deploy Applications
- Security
 Secure Infra & Applications
- Operations
 Provision Infrastructure