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Talend: A History of Innovation and Growth

| Key Facts
- ‘ I I I I | ‘ Gartner and Forrester leader
[ l ‘ I B ‘ ‘ ‘ ‘ ‘ ‘ ‘ in DI, Big Data and DQ

Founded in 2006
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 - Open Core Model

(Revenue Growth) o
—»

1000+ employees worldwide

10 countries

1700+ customers

3M+ open source downloads

500K+ registered users




The Forrester Big Data Wave 2018
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WHAT IS MACHINE LEARNING?




WILL THE SUN RISE TOMORROW?

* How does a machine learn that the sun will rise every morning?
e We are NOT going to tell it, we want it to LEARN
*  The machine knows NOTHING about how the universe works

e So, howcanitlearn?

precession

orbital movement

Sun .

Earth’s orbit around the sun

talend



SO, HOW DOES THE MACHINE LEARN?

* It simply observes and records events

* OnDay1itseesthesunrise, but it doesn’t know if it will rise
tomorrow

* |t uses the Bayesian interpretation of probability to work it out

* The probability the sun will rise increases each day. We just sum all the
possibilities

* So, on Day 1, it will either rise or not, the probability is 0.5

* On Day 2 the probability, haven seen the sun rise once is 0.66

 Atthe end of the Week it is 0.857 Ry kg

o P[{sun rises tomorrow} | {it has risen k times previously}] = flpkd =372
* Atthe end of the Year it is 0.997 T

\; talend



3 MAIN TYPES OF MACHINE LEARNING

e Supervised Learning

* A computer is presented with example inputs and desired outputs, and the goal is to
learn a general rule that maps inputs to outputs

* Un-supervised Learning

* No labels are given to the learning algorithm, leaving it on its own to find structure in
its input. Unsupervised learning can be a goal in itself (discovering hidden patterns in
data) or a means towards an end (feature learning)

* Reinforcement Learning

* A computer program interacts with a dynamic environment in which it must perform
a certain goal (such as drivinia vehicle or playing a game against an opponent). The
program is provided feedback in terms of rewards and punishments as it navigates its
problem space
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MACHINE LEARNING ALGORITHMS




MACHINE LEARNING ALGORITHMS

Naive Bayes

Group algorithms
together into types

Lots of types, lots of
algorithms

-
{

Averaged One-Dependence Estimators (AODE)

I~

Bayesian Belief Network (BEEN)

Deep Boltzmann Machine (DEM) Bayesian

Y

Deep Belief Networks (DBN) |
—— | Deep Learning

Convolutional Neural Network (CNM)  »———

/ \

.
\

Stacked Auto-Encoders /
Random Forest

™
Gradient Boosting Machines (GEM)

Boosting

Bootstrapped Aggregation (Bagging) Ensemble Decision Tree

"I

\
AdaBoost {

i

|

Stacked Generalization (Blending)
Gradient Boosted Regression Trees (GBRT) /
Radial Basis Function Network (REFN)
Perceptron
———— | Neural Networks
Back-Propagation /,%
_Zacr-rropagation g
Hopfield Network /
Ridge Regression
Least Absolute Shrinkage and Selection Operator (LASSO) | i /
- Regularization
Elastic Net
R —

Least Angle Regression (LARS) /
Cubist

—_

One Rule (OneR) |

- Rule System /
Zero Rule (ZeroR) }7’/

Repeated Incremental Pruning to Produce Error Reduction (RIPPER) /

Linear Regression

Ordinary Least Squares Regression (OLSR)

Stepwise Regression | y
—— | Regression /

Multivariate Adaptive Regression Splines (MARS) \

\\ Dimensionality Reduction

Gaussian Naive Bayes
Multinomial Naive Bayes
' Bayesian Network (BN)

Classification and Regression Tree (CART)
_Iterative Dichotomiser 3 (ID3)
C4.5
C5.0
Chi-squared Automatic Interaction Detection (CHAID)

\_ Decision Stump
I:‘-\_ Conditional Decision Trees

M5
Principal Component Analysis (PCA)

|"I Partial Least Squares Regression (PLSR
[
|/ Ssammen Mapping

/| Multidimensional Scaling (MDS)

i Projection Pursuit
Principal Component Regression (PCR)

Partial Least Squares Discriminant Analysis

\__Mixture Discriminant Analysis (MDA)

'\ Quadratic Discriminant Analysis (QDA)

\ Regularized Discriminant Analysis (RDA)

!\ Flexible Discriminant Analysis (FDA)

\_Linear Discriminant Analysis (LDA)
k-Nearest Neighbour (kNN)

r
[ Learning Vector Quantization (LVQ)

Instance Based |-
“—‘5?_ Self-Organizing Map (SOM)

| Locally Weighted Learning (LWL)

Locally Estimated Scatterplot Smaothing (LOESS) | Kt
/ -Means

Logistic Regression / \ '/W

\ [ k-Medians

\_Clustering )~ —
%@,\_ Expectation Maximization

~»talend

\__ Hierarchical Clustering
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QUESTIONS ML CAN HELP ANSWER

Which products are likely to be bought
together?
Collaborative filtering

What will be the price of this stock in a
month?

Gradient boosted tree

Will an event happen in the future?
Classification Is fraud occurring?
Decision tree

How much, what will be the number of...?
Regression Is that image a known intruder?
Support Vector Machine

Who are my gold customers? (supervised learning )

Clustering
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WHY TALEND FOR MACHINE LEARNING?

Machine Learning

* Reduce Machine Learning complexities using Talend Clasiiction
i tClassify
FE tClassifySVM
7 tDecisionTreeModel

* Point and Click tools to apply various ML techniques F tGradientBoostedTreeModel

T tLogisticRegressionModel

° ClaSSIflcathn ,.gT,' tNaiveBayesModel
=7 tPredict

’ CIUSterlng ,'?&; tRandomForestModel
e Recommendation =, 5VMMode

Clustering

* Regression 5 tkMeansMod

=7 tPredict
=7 tPredictCluster
Recommendation

* Leverage Spark for scalability and performance A ALSModel

% tRecommend
Regression

T tlinearRegressionModel

=7 tPredict

&7 tModelEncoder

~»talend
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TODAY’S GOAL

Overview:

In this Demo you will see a simple
version of making your website an
Intelligent Application.

You will experience:

® Building a Spark Recommendation
Model

* Setting up a new Kafka topic to help
simulate live web traffic coming from
Live web users browsing a retail web
store.

°* Mostimportant you will see first-
hand with Talend how you can take
streaming data and turn it into real-
time recommendations to help
improve shopping cart sales.

Customers

oI -

-<lllllllIlllIIlIllllllIIIIIIllllllIIlllllllllllllllllllllllIlllllllIllllIIIIIIIIIIIIIIIIIIIIIIIll

talend

Channels

Email
Website

Store

Internal Systems

Clickstream

Streaming

Streaming

\
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Talend Data Fabric (6.3.1.20161216_1026) | BigData_Cloudera (Connection: Local)

lin Learn & Ask W Exchange 20>~y & d i g @ &% | "sintegration F Profiling & MDM
LOCAL: BigData_Cloudera Apalette s not available.
5, Business Models

v "5 Job Deslgns
* [ Standard
» [ Big Data Batch
* [) Blg Data Streaming
» Ig Joblet Designs
¥ 23 Route Designs
23 Routes
TS Routelets
@ services
» [fy Contexts
%t Resources
» (5] Code
» 57 sQL Templates
» (5] Metadata
» | Documentation
i Recyele bin

BEETHGE

Ts Job [[& Contexts I Runjob @ Component [ Testcases ®) integration Action [CRC

Properties not available.

2 Outline &l Code Viewer 2 ®
An outline is not available.

dl



Create/tune/train
predictions,
models, scores

Full access to Operationalize
data lake for

sl analytics

Shorten time for
IT teams to
deliver




OPERATIONALIZING THE MODEL

e Extract, Transform + Apply Machine Learning, Load
* Real-Time Processing using Spark Streaming

* Lambda Architecture (Speed + Batch Layer)

* Deploy On-Premise or In the Cloud

/ 4

: oo; 2 -

m@ row1 (Main) e e Y om0 e P orden\jl'l—)&f_]@ rowa (Main) LﬁD Shin oo [l rowt Mam) | . =
Read Kafka Parse Fields Repli cabe Apply Model Replicate Aggregate XYZ Write Data to MySQL

(Ma (Ma
4

=y EEEN =

: )’:E ' E ° row8 (Main) D )’S’:
Wirite Historical Data to MySQL Aggregate Activity Write Data to MySQL

\, talend
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THANK YOU




>

Download the Talend Sandbox at https://www.talend.com/products/sandbox



