
How to safely restrict access to files in a
programmatic way with Landlock?

Mickaël Salaün

ANSSI

August 27, 2018



Part 1: Why Landlock, what is
it and how does it work?

(quick recap)

2 / 19



Designed to create tailored security sandboxes

Threat
bug exploitation or backdoor in an application (client or server side)

Goal
protect user of the application against unintended accesses

3 / 19



Designed to create tailored security sandboxes

Threat
bug exploitation or backdoor in an application (client or server side)

Goal
protect user of the application against unintended accesses

3 / 19



Features and use cases

Tailored security policy, by the developer

I e.g. able to choose the security model that fit best

I e.g. embedded in an application and evolve with it

I e.g. use application’s configuration

Compose access controls from multiple tenants

I e.g. sysadmin, end user and developers

I e.g. multiple cloud clients

Able to update access control on the fly

I e.g. native powerbox support (file picker, portal. . . )

I e.g. dynamic policy update according to external factors

4 / 19



Features and use cases

Tailored security policy, by the developer

I e.g. able to choose the security model that fit best

I e.g. embedded in an application and evolve with it

I e.g. use application’s configuration

Compose access controls from multiple tenants

I e.g. sysadmin, end user and developers

I e.g. multiple cloud clients

Able to update access control on the fly

I e.g. native powerbox support (file picker, portal. . . )

I e.g. dynamic policy update according to external factors

4 / 19



Features and use cases

Tailored security policy, by the developer

I e.g. able to choose the security model that fit best

I e.g. embedded in an application and evolve with it

I e.g. use application’s configuration

Compose access controls from multiple tenants

I e.g. sysadmin, end user and developers

I e.g. multiple cloud clients

Able to update access control on the fly

I e.g. native powerbox support (file picker, portal. . . )

I e.g. dynamic policy update according to external factors

4 / 19



Demonstration #1

Read-only accesses...

I /public
I /etc
I /usr
I . . .

...and read-write accesses

I /tmp
I . . .

5 / 19



Landlock overview

6 / 19



Gears of Landlock

Linux Security Modules (LSM)

I allow or deny user-space actions on kernel objects

I 200+ hooks: inode permission, inode unlink, file ioctl. . .

extended Berkeley Packet Filter (eBPF)

I safely interpret bytecode in the kernel at run time

I can call dedicated functions

I can exchange data through maps between eBPF programs and
user-space

Landlock

I hook: set of actions on a specific kernel object

I program: access control checks stacked on a hook

I triggers: actions mask for which a program is run

7 / 19



Gears of Landlock

Linux Security Modules (LSM)

I allow or deny user-space actions on kernel objects

I 200+ hooks: inode permission, inode unlink, file ioctl. . .

extended Berkeley Packet Filter (eBPF)

I safely interpret bytecode in the kernel at run time

I can call dedicated functions

I can exchange data through maps between eBPF programs and
user-space

Landlock

I hook: set of actions on a specific kernel object

I program: access control checks stacked on a hook

I triggers: actions mask for which a program is run

7 / 19



Gears of Landlock

Linux Security Modules (LSM)

I allow or deny user-space actions on kernel objects

I 200+ hooks: inode permission, inode unlink, file ioctl. . .

extended Berkeley Packet Filter (eBPF)

I safely interpret bytecode in the kernel at run time

I can call dedicated functions

I can exchange data through maps between eBPF programs and
user-space

Landlock

I hook: set of actions on a specific kernel object

I program: access control checks stacked on a hook

I triggers: actions mask for which a program is run

7 / 19



Unprivileged access control

Protect access to process ressources

I the process requesting to apply a new access control must be allowed
to ptrace the sandboxed process

Protect access to kernel ressources

I prevent information leak: an eBPF program shall not have access to
informations not otherwise granted to the process requesting the
sandboxing

I avoid side-channels: only interpreted on viewable objects and after
other access controls

I account kernel resources used by the access controls

8 / 19



Unprivileged access control

Protect access to process ressources

I the process requesting to apply a new access control must be allowed
to ptrace the sandboxed process

Protect access to kernel ressources

I prevent information leak: an eBPF program shall not have access to
informations not otherwise granted to the process requesting the
sandboxing

I avoid side-channels: only interpreted on viewable objects and after
other access controls

I account kernel resources used by the access controls

8 / 19



Part 2: Why and how the
filesystem access control is

different between Landlock and
other LSMs?

9 / 19



Inode’s extended attributes (xattr)

Pros

I native and efficient for the kernel to identify a file access

Cons (for Landlock)

I no composability: only one label/view per inode (hard link, bind
mounts, namespaces. . . )

I not unprivileged:
I no (efficient) accounting per access control
I need a filesystem which support xattr
I need write access to label a file

I not dynamic: impose a persistent labelling

10 / 19



Inode’s extended attributes (xattr)

Pros

I native and efficient for the kernel to identify a file access

Cons (for Landlock)

I no composability: only one label/view per inode (hard link, bind
mounts, namespaces. . . )

I not unprivileged:
I no (efficient) accounting per access control
I need a filesystem which support xattr
I need write access to label a file

I not dynamic: impose a persistent labelling

10 / 19



File path

Pros

I point of view of the user

Cons (for Landlock)

I composability: need to remember how a file was (relatively) accessed

I unprivileged:
I dealing with underlying inode can be tricky: partial path, anonymous

inodes, chroot, namespaces. . .
I risk of leaking path informations

11 / 19



File path

Pros

I point of view of the user

Cons (for Landlock)

I composability: need to remember how a file was (relatively) accessed

I unprivileged:
I dealing with underlying inode can be tricky: partial path, anonymous

inodes, chroot, namespaces. . .
I risk of leaking path informations

11 / 19



eBPF inode map

A new eBPF map type to identify an inode

I filled with a reference to the inode pointed by a file descriptor

I efficient inode matching

I updatable from user-space

I unprivileged use

Properties

I inode identification not stored on the filesystem but (accounted) in
the map

I use inode as key and associate it with a 64-bits arbitrary value

12 / 19



eBPF inode map

A new eBPF map type to identify an inode

I filled with a reference to the inode pointed by a file descriptor

I efficient inode matching

I updatable from user-space

I unprivileged use

Properties

I inode identification not stored on the filesystem but (accounted) in
the map

I use inode as key and associate it with a 64-bits arbitrary value

12 / 19



Demonstration #2

Update access rights on the fly

13 / 19



Chained programs and session

Landlock programs and their triggers (example)

14 / 19



Chained programs and session

Landlock programs and their triggers (example)

14 / 19



Chained programs and session

Landlock programs and their triggers (example)

14 / 19



Walking through a file path

Example: open /public/web/index.html

15 / 19



Walking through a file path

Example: open /public/web/index.html

15 / 19



Walking through a file path

Example: open /public/web/index.html

15 / 19



Walking through a file path

Example: open /public/web/index.html

15 / 19



Walking through a file path

Example: open /public/web/index.html

15 / 19



Walking through a file path

Example: open /public/web/index.html

15 / 19



Identifying access to a subset of the filesystem, the
Landlock way

Pros

I agnostic to chroot and namespaces

I no need for extra informations (not already available to the requester
process)

I accountable security policy

I updatable on the fly

I do not rely on string matching

I can still rely on file hierarchy. . . this way or another

I easy to implement tests

Cons

I rely on the way the kernel does (relative) pathname lookup (e.g.
symlinks, dot, dotdot)

I add a security blob to nameidata

16 / 19

https://github.com/landlock-lsm/linux/commit/45cfee44b53e309274fa2388911b39ca1837cb38


Identifying access to a subset of the filesystem, the
Landlock way

Pros

I agnostic to chroot and namespaces

I no need for extra informations (not already available to the requester
process)

I accountable security policy

I updatable on the fly

I do not rely on string matching

I can still rely on file hierarchy. . . this way or another

I easy to implement tests

Cons

I rely on the way the kernel does (relative) pathname lookup (e.g.
symlinks, dot, dotdot)

I add a security blob to nameidata

16 / 19

https://github.com/landlock-lsm/linux/commit/45cfee44b53e309274fa2388911b39ca1837cb38


Identifying access to a subset of the filesystem, the
Landlock way

Concern from the filesystem kernel developers
might rely too much on the current pathname lookup implementation,
which changed multiple times until 2000 (cf. header comments in
fs/namei.c)

However. . .

I this logic is already visible and used by DAC and MAC systems

I . . . and user-defined policies

17 / 19

https://lkml.org/lkml/2018/3/11/190
https://lkml.org/lkml/2018/3/11/190
https://github.com/landlock-lsm/linux/blob/landlock-v8/fs/namei.c#L46-L110


Identifying access to a subset of the filesystem, the
Landlock way

Concern from the filesystem kernel developers
might rely too much on the current pathname lookup implementation,
which changed multiple times until 2000 (cf. header comments in
fs/namei.c)

However. . .

I this logic is already visible and used by DAC and MAC systems

I . . . and user-defined policies

17 / 19

https://lkml.org/lkml/2018/3/11/190
https://lkml.org/lkml/2018/3/11/190
https://github.com/landlock-lsm/linux/blob/landlock-v8/fs/namei.c#L46-L110


Landlock: wrap-up

User-space hardening

I programmatic and embeddable access control

I designed for unprivileged use

Current status

I security/landlock/*: ∼2000 SLOC

I ongoing patch series: LKML, @l0kod
I figuring out about the pathname lookup concerns

I full security module stacking is coming!

Further along the way

I audit support

I extend access control: network, IPC. . .

I (real) (programmable) capabilities

I library and tools

18 / 19

https://lkml.org/lkml/2018/2/26/1214
https://twitter.com/l0kod


Landlock: wrap-up

User-space hardening

I programmatic and embeddable access control

I designed for unprivileged use

Current status

I security/landlock/*: ∼2000 SLOC

I ongoing patch series: LKML, @l0kod
I figuring out about the pathname lookup concerns

I full security module stacking is coming!

Further along the way

I audit support

I extend access control: network, IPC. . .

I (real) (programmable) capabilities

I library and tools

18 / 19

https://lkml.org/lkml/2018/2/26/1214
https://twitter.com/l0kod


Landlock: wrap-up

User-space hardening

I programmatic and embeddable access control

I designed for unprivileged use

Current status

I security/landlock/*: ∼2000 SLOC

I ongoing patch series: LKML, @l0kod
I figuring out about the pathname lookup concerns

I full security module stacking is coming!

Further along the way

I audit support

I extend access control: network, IPC. . .

I (real) (programmable) capabilities

I library and tools

18 / 19

https://lkml.org/lkml/2018/2/26/1214
https://twitter.com/l0kod


https://landlock.io

19 / 19

https://landlock.io


Life cycle of a Landlock program



Landlock program’s metadata

1 static union bpf_prog_subtype metadata = {
2 .landlock_hook = {
3 .type = LANDLOCK_HOOK_FS_PICK,
4 .options = LANDLOCK_OPTION_PREVIOUS,
5 .previous = 2, /* landlock2 */
6 .triggers = LANDLOCK_TRIGGER_FS_PICK_APPEND | \
7 LANDLOCK_TRIGGER_FS_PICK_CREATE | \
8 // [...]
9 LANDLOCK_TRIGGER_FS_PICK_WRITE,

10 }
11 };



Landlock program’s metadata

1 static union bpf_prog_subtype metadata = {
2 .landlock_hook = {
3 .type = LANDLOCK_HOOK_FS_PICK,
4 .options = LANDLOCK_OPTION_PREVIOUS,
5 .previous = 2, /* landlock2 */
6 .triggers = LANDLOCK_TRIGGER_FS_PICK_APPEND | \
7 LANDLOCK_TRIGGER_FS_PICK_CREATE | \
8 // [...]
9 LANDLOCK_TRIGGER_FS_PICK_WRITE,

10 }
11 };



Landlock program’s metadata

1 static union bpf_prog_subtype metadata = {
2 .landlock_hook = {
3 .type = LANDLOCK_HOOK_FS_PICK,
4 .options = LANDLOCK_OPTION_PREVIOUS,
5 .previous = 2, /* landlock2 */
6 .triggers = LANDLOCK_TRIGGER_FS_PICK_APPEND | \
7 LANDLOCK_TRIGGER_FS_PICK_CREATE | \
8 // [...]
9 LANDLOCK_TRIGGER_FS_PICK_WRITE,

10 }
11 };



Landlock program’s metadata

1 static union bpf_prog_subtype metadata = {
2 .landlock_hook = {
3 .type = LANDLOCK_HOOK_FS_PICK,
4 .options = LANDLOCK_OPTION_PREVIOUS,
5 .previous = 2, /* landlock2 */
6 .triggers = LANDLOCK_TRIGGER_FS_PICK_APPEND | \
7 LANDLOCK_TRIGGER_FS_PICK_CREATE | \
8 // [...]
9 LANDLOCK_TRIGGER_FS_PICK_WRITE,

10 }
11 };



Landlock program’s metadata

1 static union bpf_prog_subtype metadata = {
2 .landlock_hook = {
3 .type = LANDLOCK_HOOK_FS_PICK,
4 .options = LANDLOCK_OPTION_PREVIOUS,
5 .previous = 2, /* landlock2 */
6 .triggers = LANDLOCK_TRIGGER_FS_PICK_APPEND | \
7 LANDLOCK_TRIGGER_FS_PICK_CREATE | \
8 // [...]
9 LANDLOCK_TRIGGER_FS_PICK_WRITE,

10 }
11 };



Landlock program’s metadata

1 static union bpf_prog_subtype metadata = {
2 .landlock_hook = {
3 .type = LANDLOCK_HOOK_FS_PICK,
4 .options = LANDLOCK_OPTION_PREVIOUS,
5 .previous = 2, /* landlock2 */
6 .triggers = LANDLOCK_TRIGGER_FS_PICK_APPEND | \
7 LANDLOCK_TRIGGER_FS_PICK_CREATE | \
8 // [...]
9 LANDLOCK_TRIGGER_FS_PICK_WRITE,

10 }
11 };



Landlock program code

1 int fs_pick_write(struct landlock_ctx_fs_pick *ctx) {
2 __u64 cookie = ctx->cookie;
3
4 cookie = update_cookie(cookie, ctx->inode_lookup,
5 (void *)ctx->inode);
6 if (cookie & MAP_MARK_WRITE)
7 return LANDLOCK_RET_ALLOW;
8 return LANDLOCK_RET_DENY;
9 }



Landlock program code

1 int fs_pick_write(struct landlock_ctx_fs_pick *ctx) {
2 __u64 cookie = ctx->cookie;
3
4 cookie = update_cookie(cookie, ctx->inode_lookup,
5 (void *)ctx->inode);
6 if (cookie & MAP_MARK_WRITE)
7 return LANDLOCK_RET_ALLOW;
8 return LANDLOCK_RET_DENY;
9 }



Landlock program code

1 int fs_pick_write(struct landlock_ctx_fs_pick *ctx) {
2 __u64 cookie = ctx->cookie;
3
4 cookie = update_cookie(cookie, ctx->inode_lookup,
5 (void *)ctx->inode);
6 if (cookie & MAP_MARK_WRITE)
7 return LANDLOCK_RET_ALLOW;
8 return LANDLOCK_RET_DENY;
9 }



Landlock program code

1 int fs_pick_write(struct landlock_ctx_fs_pick *ctx) {
2 __u64 cookie = ctx->cookie;
3
4 cookie = update_cookie(cookie, ctx->inode_lookup,
5 (void *)ctx->inode);
6 if (cookie & MAP_MARK_WRITE)
7 return LANDLOCK_RET_ALLOW;
8 return LANDLOCK_RET_DENY;
9 }



Landlock program code

1 int fs_pick_write(struct landlock_ctx_fs_pick *ctx) {
2 __u64 cookie = ctx->cookie;
3
4 cookie = update_cookie(cookie, ctx->inode_lookup,
5 (void *)ctx->inode);
6 if (cookie & MAP_MARK_WRITE)
7 return LANDLOCK_RET_ALLOW;
8 return LANDLOCK_RET_DENY;
9 }



Landlock program code

1 int fs_pick_write(struct landlock_ctx_fs_pick *ctx) {
2 __u64 cookie = ctx->cookie;
3
4 cookie = update_cookie(cookie, ctx->inode_lookup,
5 (void *)ctx->inode);
6 if (cookie & MAP_MARK_WRITE)
7 return LANDLOCK_RET_ALLOW;
8 return LANDLOCK_RET_DENY;
9 }



Loading a rule in the kernel

1 union bpf_attr attr = {
2 .insns = bytecode_array,
3 .prog_type = BPF_PROG_TYPE_LANDLOCK_HOOK,
4 .prog_subtype = &metadata,
5 // [...]
6 };
7 int prog_fd = bpf(BPF_PROG_LOAD, &attr, sizeof(attr));



Loading a rule in the kernel

1 union bpf_attr attr = {
2 .insns = bytecode_array,
3 .prog_type = BPF_PROG_TYPE_LANDLOCK_HOOK,
4 .prog_subtype = &metadata,
5 // [...]
6 };
7 int prog_fd = bpf(BPF_PROG_LOAD, &attr, sizeof(attr));



Loading a rule in the kernel

1 union bpf_attr attr = {
2 .insns = bytecode_array,
3 .prog_type = BPF_PROG_TYPE_LANDLOCK_HOOK,
4 .prog_subtype = &metadata,
5 // [...]
6 };
7 int prog_fd = bpf(BPF_PROG_LOAD, &attr, sizeof(attr));



Loading a rule in the kernel

1 union bpf_attr attr = {
2 .insns = bytecode_array,
3 .prog_type = BPF_PROG_TYPE_LANDLOCK_HOOK,
4 .prog_subtype = &metadata,
5 // [...]
6 };
7 int prog_fd = bpf(BPF_PROG_LOAD, &attr, sizeof(attr));



Loading a rule in the kernel

1 union bpf_attr attr = {
2 .insns = bytecode_array,
3 .prog_type = BPF_PROG_TYPE_LANDLOCK_HOOK,
4 .prog_subtype = &metadata,
5 // [...]
6 };
7 int prog_fd = bpf(BPF_PROG_LOAD, &attr, sizeof(attr));



Loading a rule in the kernel



Applying a Landlock program to a process

1 seccomp(SECCOMP_PREPEND_LANDLOCK_PROG, 0, &prog_fd);



Applying a Landlock program to a process



Applying a Landlock program to a process



Applying a Landlock program to a process



Kernel execution flow

Example: the inode create hook

1. check if landlocked(current)
2. call decide fs pick(LANDLOCK TRIGGER FS PICK CREATE, dir)
3. for all fs pick programs enforced on the current process

3.1 update the program’s context
3.2 interpret the program
3.3 continue until one denies the access



Rule enforcement on process hierarchy



Rule enforcement on process hierarchy



Rule enforcement on process hierarchy



Rule enforcement on process hierarchy



Rule enforcement on process hierarchy



Rule enforcement on process hierarchy



Enforcement through cgroups

Why?
user/admin security policy (e.g. container): manage groups of processes

Challenges

I complementary to the process hierarchy rules (via seccomp(2))

I processes moving in or out of a cgroup

I unprivileged use with cgroups delegation (e.g. user session)



Enforcement through cgroups

Why?
user/admin security policy (e.g. container): manage groups of processes

Challenges

I complementary to the process hierarchy rules (via seccomp(2))

I processes moving in or out of a cgroup

I unprivileged use with cgroups delegation (e.g. user session)



Future Landlock program types

fs get
tag inodes: needed for relative path checks (e.g. openat(2))

fs ioctl
check IOCTL commands

net *
check IPs, ports, protocol. . .



Future Landlock program types

fs get
tag inodes: needed for relative path checks (e.g. openat(2))

fs ioctl
check IOCTL commands

net *
check IPs, ports, protocol. . .



Future Landlock program types

fs get
tag inodes: needed for relative path checks (e.g. openat(2))

fs ioctl
check IOCTL commands

net *
check IPs, ports, protocol. . .


	Part 1: Why Landlock, what is it and how does it work? (quick recap)
	Designed to create tailored security sandboxes
	Features and use cases
	Demonstration #1
	Landlock overview
	Gears of Landlock
	Unprivileged access control

	Part 2: Why and how the filesystem access control is different between Landlock and other LSMs?
	Inode's extended attributes (xattr)
	File path
	eBPF inode map
	Demonstration #2
	Chained programs and session
	Walking through a file path
	Identifying access to a subset of the filesystem, the Landlock way
	Identifying access to a subset of the filesystem, the Landlock way

	Conclusion
	Landlock: wrap-up

	Appendix
	From the rule to the kernel
	Life cycle of a Landlock program
	Landlock program's metadata
	Landlock program code
	Loading a rule in the kernel
	Applying a Landlock program to a process
	Kernel execution flow

	Misc
	Rule enforcement on process hierarchy
	Enforcement through cgroups
	Future Landlock program types



