How Container Runtimes matter in
Kubernetes?

Kunal Kushwaha
NTT OSS Center

Copyright©2018 NTT Corp. All Rights Reserved.

About me

* Works @ NTT Open Source Software Center
« Contributes to containerd and other related projects.
* Docker community leader, Tokyo

W () @kunalkushwaha

2
Copyright©2018 NTT Corp. All Rights Reserved.

Agenda

 Kubernetes Architecture.

« What is CRI (Container Runtime Interface)
« What is OCI (Open Container Initiative)
 CRI & OCI Implementations

« Why runtimes affect Kubernetes.
 Runtime Benchmarking results
 Analyzing for various workloads

« Summary

Copyright©2018 NTT Corp. All Rights Reserved.

Kubernetes Architecture

A typical Kubernetes cluster

| Kubernetes
{ Worker #1

L
L
L

1 Kubernetes
’ Worker #n

4

Copyright©2018 NTT Corp. All Rights Reserved.

Kubernetes Cluster Overview —

Q
X ;

l Kubernetes

User

v Kubernetes | « :
kubectl > Master -
Kubernetes
Worker #n

- kubectl is tool for user to interact with k8s cluster.

- Master node interpret the command and if required interact
with worker nodes.

®) N1T 5

Copyright©2018 NTT Corp. All Rights Reserved.

Master Node Overview

Control Kubernetes
ontro Worker #1
Scheduler

API Server

Kubernetes
Worker #n

Important components of Kubernetes Master Node

6

Copyright©2018 NTT Corp. All Rights Reserved.

S
Master Node Control Flow - - 4

- Kubernetes
Worker #1

Control

API Server

Kubernetes
Worker #n

- API Server plays a central part for cluster communication
- etcd store all definition of kubernetes resources
- Scheduler and Control Manager push commands for workers via AP| Server

© nrT 7

Copyright©2018 NTT Corp. All Rights Reserved.

Kubernetes Architecture 4

| Kubernetes
Worker #1

Kubernetes
Worker #n

®) N1T 8

Copyright©2018 NTT Corp. All Rights Reserved.

Kubernetes Worker Overview

noveses RED seyNTT

Kubernetes Worker

Kubernetes
Master

Service Proxy

Container

Kubelet

Runtime :

Important components of Kubernetes Worker Node

9

Copyright©2018 NTT Corp. All Rights Reserved.

Kubernetes Worker Control Flow —

Kubernetes Worker

Kubernetes
Master

Service Proxy

l

Container

v

Kubelet

Runtime :

Kubelet is the primary Node agent. API Server talks to Kubelet.
Service Proxy enables user to access applications running on node.
Docker running on node is used for creating Pods.

10

Copyright©2018 NTT Corp. All Rights Reserved.

Kubernetes Worker Control Flow —

Kubernetes Worker

Kubernetes
Master

Service Proxy

|

v

Kubelet

—.| Jdocker

Kubelet is the primary Node agent. API Server talks to Kubelet.
Service Proxy enables user to access applications running on node.
Docker running on node is used for creating Pods.

11
Copyright©2018 NTT Corp. All Rights Reserved.

Kubernetes Worker Overview

oveses REBD sy NTT

Kubernetes Worker

Kubernetes
Master

Service Proxy

%

docker

Kubelet

I rkt

With alternative container runtimes, Kubelet code gets bloated to support each.

12
Copyright©2018 NTT Corp. All Rights Reserved.

Container Runtime Interface —

Introduced in Kubernetes 1.5 *. (2016)

Interfaces for gRPC service for Runtime & Image Management

Container centric interfaces

Pod containers as Sandbox containers

Current status: vialpha2

*https://github.com/kubernetes/kubernetes/blob/release-1.5/docs/proposals/container-runtime-interface-v1i.md

®) N1T 13

Copyright©2018 NTT Corp. All Rights Reserved.

https://github.com/kubernetes/kubernetes/blob/release-1.5/docs/proposals/container-runtime-interface-v1.md

Kubelet with CRI b4

Kubernetes Worker

Kubernetes

Kubelet
- Master

CRI solves supporting various runtime alternatives with no change in Kubelet

®) N1T 14

Copyright©2018 NTT Corp. All Rights Reserved.

Container Runtime

Kubernetes
Master

Kubelet

Kubernetes Worker

Container

Runtime

noveses RED seyNTT

15
Copyright©2018 NTT Corp. All Rights Reserved.

What is Container Runtime —

Provides core primitives to manage containers on host

Container execution & supervision
Network Interfaces and management
Image management

Manage local storage

e.g. LXC, Docker, rkt

®) N1T 16

Copyright©2018 NTT Corp. All Rights Reserved.

Open Container Initiative OPEN o

Container runtime & Image specification

Runtime specs define input to create a container

Multiple platform supported (Linux, Windows, Solaris & VM)

runc is default implementation of OCI Runtime Specs

Current Runtime Specs status : v1.0.1

oveTes RED Sy NTT

17
Copyright©2018 NTT Corp. All Rights Reserved.

Gap between Kubelet & OCI runtime —

Kubelet Requirements for

Runtime

Manage images (pull / push /rm ..)

Talks CRI/ gRPC

Prepare environment to successfully
instantiate container.

Prepare network for pod

OCI Runtime

Do not understand concept of image

Input is OCI specs (json and rootfs)

Consume the rootfs and container
config file (json)

Attach network as pre-start hook.

18

Copyright©2018 NTT Corp. All Rights Reserved.

Runtime in Kubernetes

Kubernetes
Master

Kubernetes Worker

Kubelet

Container Runtime

OCI Runtime

Apart from OCI, another runtime component is required

19
Copyright©2018 NTT Corp. All Rights Reserved.

Runtime in Kubernetes

Kubernetes
Master

oveses REBD sy NTT

Kubernetes Worker

Kubelet

High-level Runtime

Container Runtime

A

OCI Runtime

High level runtime implement CRI gRPC services
- Take care of all prerequisite to successfully operate OCI runtimes

20
Copyright©2018 NTT Corp. All Rights Reserved.

Runtime in Kubernetes

T

Kubernetes
Master

oveses REBD sy NTT

Kubernetes Worker

Kubelet

High-level Runtime Low-level Runtime

Container Runtime

A

OCI Runtime

OCI runtime works as low-level runtime
High-level runtime provides inputs to OCI runtime as per OCI Specs

21
Copyright©2018 NTT Corp. All Rights Reserved.

CRI Implementations

* Dockershim
* CRI-O

* Containerd
* Frakti

* rktlet

Copyright©2018 NTT Corp. All Rights Reserved.

Dockershim

Kubernetes Worker

Kubelet

CRI ~«

- Embedded into Kubelet.

- Dockershim talks to docker, which manage pods.

Containerd
(Old)

runC

- Default CRI implementation & enjoy majority in current kubernetes deployments

23
Copyright©2018 NTT Corp. All Rights Reserved.

CRI-O =

Kubernetes Worker

Kubelet

CRI+

- CRI-O reduces the one extra hop from docker.

- CRI-O uses CNI for providing networking to pods.

- Monolithic design (understands CRI and outputs OCI compatible)
- Works with all OCI runtimes.

®) N1T 24

Copyright©2018 NTT Corp. All Rights Reserved.

containerD

oveses REBD sy NTT

Kubernetes Worker

Kubelet I:EII'ItEiI'IEI_H
. OC' < » runC E

A

CRI

containerD, with revised scope eliminates the extra hop required by docker.
Redesigned storage drivers for simplicity and better performance.
Extensible design, CRI service runs as plugin.

Uses CNI for networking

Works with all OCI runtimes.

25
Copyright©2018 NTT Corp. All Rights Reserved.

Frakti

Kubernetes Worker

Kubelet

CRI

Frakti

iﬁ%’

-
«

OCl+

docker

Hyped
runV

- Frakti runtime was designed to support VM based runtime to kubernetes.

- It supports mixed runtimes

- Linux containers for privilege containers and runV containers for rest
- Though uses dockershim to use linux containers, result into extra hops

- Also supports Unikernels
®) N1T

26
Copyright©2018 NTT Corp. All Rights Reserved.

Frakti v2- Coming soon

noveses RED seyNTT

Kubernetes Worker

Kubelet

CRI

Enntainerm

A

R CRI Frak_ti
Plugin Plugin

—C _____

runC

—

Kata

containers

- Frakti v2 will be implemented as runtime plugin for containerD.

- Reduce extra hops and implementation effort too.

27
Copyright©2018 NTT Corp. All Rights Reserved.

OCI Runtimes

runC
runV
Clear Containers

kata-runtime

gVisor

- Default OCI specs implementation
- Isolation based on Namespace, cgroups, secomp & MAC (AppArmor, SELinux)

28

Copyright©2018 NTT Corp. All Rights Reserved.

OCI Runtimes

runC
runV
Clear Containers

kata-runtime

gVisor

- Default OCI specs implementation

- Isolation based on Namespace, cgroups, secomp & MAC (AppArmor, SELinux)

- OCI compliant VM based runtime
- Uses optimized gemu & KVM.
- A light weight guest kernel is used.

Copyright©2018 NTT Corp. All Rights Reserved.

OCI Runtimes

runC
runV
Clear Containers

kata-runtime

gVisor

- Default OCI specs implementation

- Isolation based on Namespace, cgroups, secomp & MAC (AppArmor, SELinux)

- OCI compliant VM based runtime
- Uses gemu & KVM.
- A light weight guest kernel is used.

- Hardware-virtualized containers using Intel’s VT-x
- Utilize DAX “direct access” feature of 4.0 kernel

Copyright©2018 NTT Corp. All Rights Reserved.

OCI Runtimes

runC
runV
Clear Containers

kata-runtime

gVisor

- Default OCI specs implementation

- Isolation based on Namespace, cgroups, secomp & MAC (AppArmor, SELinux)

- OCI compliant VM based runtime
- Uses gemu & KVM.
- A light weight guest kernel is used.

- Hardware-virtualized containers using Intel’s VT-x
- Utilize DAX “direct access” feature of 4.0 kernel

- Best of runV & cc-containers
- 1.0 Release (22nd May, 2018)
- Under active development

Copyright©2018 NTT Corp. All Rights Reserved.

OCI Runtimes

runC
runV
Clear Containers

kata-runtime

gVisor

- Default OCI specs implementation

- Isolation based on Namespace, cgroups, secomp & MAC (AppArmor, SELinux)

- OCI compliant VM based runtime
- Uses gemu & KVM.
- A light weight guest kernel is used.

- Hardware-virtualized containers using Intel’s VT-x
- Utilize DAX “direct access” feature of 4.0 kernel

- Best of runV & cc-containers
- 1.0 Release (22nd May, 2018)
- Under active development

- Sandbox based containers

- Intercepts application system call acts like kernel.
- similar approach as User Mode Linux (UML)

- Under active development

Copyright©2018 NTT Corp. All Rights Reserved.

Final candidates for Evaluation

High-level Runtime
Dockershim
runC
CRI-O
Kata containers —<<
containerD

noveses RED Sy NTT

Low-level Runtime

— runV

— clear containers

33

Copyright©2018 NTT Corp. All Rights Reserved.

Why runtimes affect kubernetes

Copyright©2018 NTT Corp. All Rights Reserved.

Kubernetes Architecture |

—

Kubernetes Worker #1

Service Proxy i
I Runtime l
Kubelet '

¢
‘ -

Kubernetes Worker #n

HH

Kubernetes
Master

—

Service Proxy .‘:'
Runtime

Kubelet

i

Kubernetes offers variety of choices to tune the system

35
Copyright©2018 NTT Corp. All Rights Reserved.

Kubernetes Architecture ~

noveses RED seyNTT

Pe—

S P —

Kubernetes Worker #1

! ']
Service Proxy

Runtime

——r——

| Kubelet l

l_ﬁ
D

Kubernetes
Master

€
¥

Kubernetes Worker #n

r—

i P——

|

Service Proxy R
iRuntime !

Kubelet

i

i

- Kubernetes offers variety of choices to tune the system
- Once rest of components finalized
- for deployment and management runtime is only variable factor.

- For application performance only low level runtime matters.
©) NTT 36

Copyright©2018 NTT Corp. All Rights Reserved.

Performance benchmarking b

Application deployment performance

- Container operations (Create, start, stop, remove)

Application Performance

« Containerization / Virtualization overhead.

®) N1T 37

Copyright©2018 NTT Corp. All Rights Reserved.

Performance benchmarking process —

Benchmark Environment
* Prerequisite :

Architecture: x86 64
* Pull Sandpox Image CPU(s): 3
. &%Lg&pl’?;ggtr)lmage Core(s) per socket: 4
' Model name: i7-3630Q0M CPU @ 2.40GHz
Virtualization: VT-x
Kernel : linux 4.15
oS : Ubuntu
e 4 Threads X950
A 3 q
{ Create }(Start }(Stop)(Delete }
- Create & Run PodSandbox - Start Application Container - Stop Application Container - Delete Application Container
- Create Application Container - Stop PodSandbox

- Delete PodSandbox
* Rootfs prepared from Image

« Writable area for container

* CNI plugin invocation for Network

© NrT 38
Copyright©2018 NTT Corp. All Rights Reserved.

runC Performance

Software versions

Containerd : v1.1.0 B containerd cri-o
cri-o : v1.10.1
Docker : 18.05.0.ce
Runc : v1.0
git #69663f0bd4b
Create 0.73
Start |0.03
. 075
Stop 0.24
Delete 0.53
0 0.2 0.4 0.6 0.8
Seconds

B dockershim

~

oveses RED Sy NTT

Performance difference due to high level
runtime

Low-level runtime (runC) is constant in all

cri-o and docker share same graph driver
design, could be reason for high create time.

containerD perform better in almost all case.

39

Copyright©2018 NTT Corp. All Rights Reserved.

Latency with runC

B containerd

T

Time to start

Time to stop

0.77

0 0.35 0.7

Seconds

cri-o

1.05

B dockershim

1.4

Time before application start
running in runC container

Time before resources are
released after application stops

N

noveses RED seyNTT

cri-o & containerD both perform
better than docker

In performance, containerD
performs better than cri-o

40
Copyright©2018 NTT Corp. All Rights Reserved.

Kata-runtime Performance

Software versions

~

oveses RED Sy NTT

B containerd cri-o B dockershim
Containerd : v1.1.0
cri-o : v1.10.1
Docker : 18.05.0.ce
kata-runtime: v1.0
Create 1.65 Difference is mainly due to high level runtime
153 performance.
0.09
Start [0.03
|0.14
1025
Stop 10.32 *
S 1034
0.4
Delete |0.62
j0i48
0 3 6 9 12
Seconds
*

- Bug in Stop logic, while invoked through CRI

Takes < 2 seconds, if done directly through docker or containerD

41
Copyright©2018 NTT Corp. All Rights Reserved.

Latency with Kata -

oveses RED Sy NTT

B containerd cri-o B dockershim B Frakti

,m Latency with kata-container is comparable with all high-level

runtimes.
Time to start

1.67

High-level Runtime don’t make much difference if low-level
runtime consume most

Time to stop

0 2.75 5.8 8.25 11

Seconds

42

Copyright©2018 NTT Corp. All Rights Reserved.

kata vs runV vs clear-containers

Software vers

Containerd :
Docker
Frakti
runv

B kata + containerd

ions

v1.1.0

: 18.05.0.ce
: v1.10.0
: v1.0.0 Create

Start

Stop

Delete

0.09
0.35

10:69

1.49

10i54

0.81

0.32

2.67

cc-containers + containerd

6
Seconds

N

oveTes RED Sy NTT

M runV + frakti

12

Stop function of cc-containers & runV looks

normal. Hence fix required for kata containers.

Kata containers performance is in-between

runV and cc-runtime.

43

Copyright©2018 NTT Corp. All Rights Reserved.

Latency with VM based runtimes ——

B kata + containerd cc-container + containerd B runV + frakti [

2.27

runV performs for container operations is best

Time to start in VM containers.

Kata is still in active development

Time to stop

0 2.75 5.5 8.25 11

Seconds

©) NTT 44

Copyright©2018 NTT Corp. All Rights Reserved.

Performance Overhead — Low-level runtimes

I/0 Throughput Average System Load

o)

®

o

]

o

o

\ “
mrunC kata-containers wmrunY wmclear containzrs

Runtime performance overhead affect application running inside container.

runC perform best in both 10 throughput and average CPU load.

kata-containers perform best among VM containers.

®) N1T 45

Copyright©2018 NTT Corp. All Rights Reserved.

Workloads

N

noveses RED seyNTT

46
Copyright©2018 NTT Corp. All Rights Reserved.

Serverless

 Host functions instead of applications?
 Functions as service
* e.g. AWS Lambda

* ldeal Platform
 Low latency
* High parallelism i.e. high density.
 Low on resources (CPU, Memory)

Copyright©2018 NTT Corp. All Rights Reserved.

Serverless platform

containerd + runC

Ccri-o + runC

Frakti + runV

Any + kata-containers

Latency Best Better Good Average
Cold start Best Better Better Average
Warm start Better Best Average Good
Density Best Good Average Average
Security Good Good Best Best
(namespace + seccomp + (namespace + seccomp + (VM based) (VM Based)
SELinux) SELinux)
Stability Stable Stable/Best with Openshift Stable Under Active development
Support Cycle (defined support cycle for (Not defined) (managed by
each release) hyper.sh) (Not defined)
(not defined)

®) N1T

J

Copyright©2018 NTT Corp. All Rights Reserved.

Peak hour demand / Micro Services

* Mostly applications are of type Micro services.
 ldeally immutable
* Quick scale up and scale down.

* ldeal Platform
* Low latency for start application and free resources.

* Better utilize the host system.

Copyright©2018 NTT Corp. All Rights Reserved.

Mean Time To Recover (MTTR) - DevOps

* Short Lived containers

* Frequent updates

- Fast recovery is important.
*Low on resources

Copyright©2018 NTT Corp. All Rights Reserved.

Micro-services / MTTR

[Tl
containerd + runC cri-o + runC Frakti + runV Any + kata-containers

Latency Best Better Good Average

Density Best Better Average Good

Security Good Good Best Best

(namespace + seccomp + (namespace + seccomp + (VM based) (VM Based)
SELinux) SELinux)
Stability Stable Stable/Best with Openshift Stable Under Active development
Support Cycle (defined support cycle for (Not defined) (managed by hyper.sh)
each release) (not defined)

®) N1T

Copyright©2018 NTT Corp. All Rights Reserved.

Long running containers

 Migrated application.
« Stateful containers.
 Hard to scale containers.
* Requirements

« Stability

* Security

* Performance

* Migration

Copyright©2018 NTT Corp. All Rights Reserved.

Long running containers

[
containerd + runC cri-o + runC Frakti + runV Any + kata-containers
Stability Best Stable/Best with Openshift Good Under Active development
Support Cycle (defined support cycle for (Not defined) (managed by hyper.sh)
each release) (not defined) (not defined)
Security Good Good Best Best
(namespace + seccomp + (namespace + seccomp + (VM based) (VM Based)
SELinux) SELinux)
Performance Best Best Average Better
Overhead
Migration Required Required Required Required
Governance CNCF + OClI Kubernetes Incubator + Kubernetes + hypersh OpenStack Foundation
J oCl|

®) N1T

53

Copyright©2018 NTT Corp. All Rights Reserved.

Summary

* CRI and OCI enable more choices for container runtimes.

 For Cloud Native workloads, Linux containers based runtimes suite
better.

* High level runtime performance do not matter much for long running
containers, So low level runtime performance & capabilities become
focus.

* VM based runtimes are promising, but still need some time to reach
flexibility and usability as Linux containers runtime.

* Migration of monolithic applications / high security applications to modern
platform like kubernetes will get boost with VM based runtimes.

®) N1T

Copyright©2018 NTT Corp. All Rights Reserve

Few more OCI runtimes

* Runtime getting ready for OCI complaint
* rkt - container runtime from CoreOS

 https://github.com/rkt/rkt
* https://github.com/rkt/rkt/issues/3368

* gVisor - Sandbox based containerization

* https://github.com/google/gvisor
* railcar — linux containers in implementation in rust

* https://github.com/oracle/railcar
» slow development
* crun — linux containers in implementation in C

* https://github.com/giuseppe/crun

* Fully featured but lack clarity on maintenance and support.

95

Copyright©2018 NTT Corp. All Rights Reserved.

https://github.com/rkt/rkt
https://github.com/rkt/rkt
https://github.com/rkt/rkt/issues/3368
https://github.com/rkt/rkt/issues/3368
https://github.com/google/gvisor
https://github.com/google/gvisor
https://github.com/oracle/railcar
https://github.com/oracle/railcar
https://github.com/giuseppe/crun
https://github.com/giuseppe/crun

Thank You

Copyright©2018 NTT Corp. All Rights Reserved.

