
Copyright©2018 NTT Corp. All Rights Reserved.

Kunal Kushwaha
NTT OSS Center

How Container Runtimes matter in
Kubernetes?

Copyright©2018 NTT Corp. All Rights Reserved.
:2

• Works @ NTT Open Source Software Center
• Contributes to containerd and other related projects.
• Docker community leader, Tokyo

About me

@kunalkushwaha

Copyright©2018 NTT Corp. All Rights Reserved.
:3

• Kubernetes Architecture.
• What is CRI (Container Runtime Interface)
• What is OCI (Open Container Initiative)
• CRI & OCI Implementations
• Why runtimes affect Kubernetes.
• Runtime Benchmarking results
• Analyzing for various workloads
• Summary

Agenda

Copyright©2018 NTT Corp. All Rights Reserved.
:4

Kubernetes Architecture

A typical Kubernetes cluster

Copyright©2018 NTT Corp. All Rights Reserved.
:5

Kubernetes Cluster Overview

kubectl

User

- kubectl is tool for user to interact with k8s cluster.
- Master node interpret the command and if required interact

with worker nodes.

Copyright©2018 NTT Corp. All Rights Reserved.
:6

Master Node Overview

Kubernetes Master

Control
manager

API Server

Scheduler

etcd

Important components of Kubernetes Master Node

Copyright©2018 NTT Corp. All Rights Reserved.
:7

Master Node Control Flow

Kubernetes Master

Control
manager

API Server

Scheduler

etcd

- API Server plays a central part for cluster communication
- etcd store all definition of kubernetes resources
- Scheduler and Control Manager push commands for workers via API Server

kubectl REST

Copyright©2018 NTT Corp. All Rights Reserved.
:8

Kubernetes Architecture

User

kubectl

Copyright©2018 NTT Corp. All Rights Reserved.
:9

Kubernetes Worker Overview

Kubernetes Worker

Kubelet

Container
Runtime

Service Proxy

Pod

Pod

Important components of Kubernetes Worker Node

Copyright©2018 NTT Corp. All Rights Reserved.
:10

Kubernetes Worker Control Flow

Kubernetes Worker

Kubelet

Service Proxy

Pod

Pod

- Kubelet is the primary Node agent. API Server talks to Kubelet.
- Service Proxy enables user to access applications running on node.
- Docker running on node is used for creating Pods.

Container
Runtime

Copyright©2018 NTT Corp. All Rights Reserved.
:11

Kubernetes Worker Control Flow

Kubernetes Worker

Kubelet

Docker

Service Proxy

Pod

Pod

- Kubelet is the primary Node agent. API Server talks to Kubelet.
- Service Proxy enables user to access applications running on node.
- Docker running on node is used for creating Pods.

Copyright©2018 NTT Corp. All Rights Reserved.
:12

Kubernetes Worker Overview

Kubernetes Worker

Kubelet

Service Proxy

Pod

Pod

With alternative container runtimes, Kubelet code gets bloated to support each.

2014

Copyright©2018 NTT Corp. All Rights Reserved.
:13

Container Runtime Interface

 Introduced in Kubernetes 1.5 *. (2016)

 Interfaces for gRPC service for Runtime & Image Management

 Container centric interfaces

 Pod containers as Sandbox containers

 Current status: v1alpha2

*https://github.com/kubernetes/kubernetes/blob/release-1.5/docs/proposals/container-runtime-interface-v1.md

https://github.com/kubernetes/kubernetes/blob/release-1.5/docs/proposals/container-runtime-interface-v1.md

Copyright©2018 NTT Corp. All Rights Reserved.
:14

Kubelet with CRI

Kubernetes Worker

Kubelet

Docker

CRI
C
R
I

S
h
I
m

 CRI solves supporting various runtime alternatives with no change in Kubelet

Copyright©2018 NTT Corp. All Rights Reserved.
:15

Container Runtime

Kubernetes Worker

Kubelet Container
Runtime

CRI
C
R
I

S
h
I
m

Copyright©2018 NTT Corp. All Rights Reserved.
:16

What is Container Runtime

 Provides core primitives to manage containers on host

 Container execution & supervision

 Network Interfaces and management

 Image management

 Manage local storage

 e.g. LXC, Docker, rkt

Copyright©2018 NTT Corp. All Rights Reserved.
:17

Open Container Initiative

 Container runtime & Image specification

 Runtime specs define input to create a container

 Multiple platform supported (Linux, Windows, Solaris & VM)

 runc is default implementation of OCI Runtime Specs

 Current Runtime Specs status : v1.0.1

Copyright©2018 NTT Corp. All Rights Reserved.
:18

Gap between Kubelet & OCI runtime

Kubelet Requirements for
Runtime OCI Runtime

Prepare environment to successfully
instantiate container.

Manage images (pull / push / rm ..)

Talks CRI / gRPC

Consume the rootfs and container
config file (json)

Do not understand concept of image

Input is OCI specs (json and rootfs)

Prepare network for pod Attach network as pre-start hook.

Copyright©2018 NTT Corp. All Rights Reserved.
:19

Runtime in Kubernetes

Kubernetes Worker

Kubelet Container Runtime OCI Runtime

 Apart from OCI, another runtime component is required

Copyright©2018 NTT Corp. All Rights Reserved.
:20

Runtime in Kubernetes

Kubernetes Worker

Kubelet Container Runtime OCI Runtime

High-level Runtime

CRI

- High level runtime implement CRI gRPC services
- Take care of all prerequisite to successfully operate OCI runtimes

Copyright©2018 NTT Corp. All Rights Reserved.
:21

Runtime in Kubernetes

Kubernetes Worker

Kubelet Container Runtime OCI Runtime

High-level Runtime Low-level Runtime

OCICRI

- OCI runtime works as low-level runtime
- High-level runtime provides inputs to OCI runtime as per OCI Specs

Copyright©2018 NTT Corp. All Rights Reserved.
:22

CRI Implementations

• Dockershim
• CRI-O
• Containerd
• Frakti
• rktlet

Copyright©2018 NTT Corp. All Rights Reserved.
:23

Dockershim

Kubernetes Worker

CRI
Dockershim

Kubelet

Containerd
(Old) runC

Pod

Pod

- Embedded into Kubelet.
- Dockershim talks to docker, which manage pods.
- Default CRI implementation & enjoy majority in current kubernetes deployments

Copyright©2018 NTT Corp. All Rights Reserved.
:24

CRI-O

Kubernetes Worker

CRI

Kubelet

runC

Pod

Pod

OCI

- CRI-O reduces the one extra hop from docker.
- CRI-O uses CNI for providing networking to pods.
- Monolithic design (understands CRI and outputs OCI compatible)
- Works with all OCI runtimes.

Copyright©2018 NTT Corp. All Rights Reserved.
:25

containerD

Kubernetes Worker

CRI

Kubelet

runC

Pod

Pod

OCICRI
Plugin

- containerD, with revised scope eliminates the extra hop required by docker.
- Redesigned storage drivers for simplicity and better performance.
- Extensible design, CRI service runs as plugin.
- Uses CNI for networking
- Works with all OCI runtimes.

Copyright©2018 NTT Corp. All Rights Reserved.
:26

Frakti

Kubernetes Worker

CRI

Kubelet

VM Pod

Pod

OCI

Frakti

Hyped
runV

Dockershim

- Frakti runtime was designed to support VM based runtime to kubernetes.
- It supports mixed runtimes

- Linux containers for privilege containers and runV containers for rest
- Though uses dockershim to use linux containers, result into extra hops

- Also supports Unikernels

Copyright©2018 NTT Corp. All Rights Reserved.
:27

Frakti v2- Coming soon

Kubernetes Worker

CRI

Kubelet runC

VM Pod

Pod

Kata
containers

CRI
Plugin

Frakti
Plugin

- Frakti v2 will be implemented as runtime plugin for containerD.
- Reduce extra hops and implementation effort too.

Copyright©2018 NTT Corp. All Rights Reserved.
:28

OCI Runtimes

runC - Default OCI specs implementation
 - Isolation based on Namespace, cgroups, secomp & MAC (AppArmor, SELinux)

runV

Clear Containers

kata-runtime

gVisor

Copyright©2018 NTT Corp. All Rights Reserved.
:29

OCI Runtimes

runC - Default OCI specs implementation
 - Isolation based on Namespace, cgroups, secomp & MAC (AppArmor, SELinux)

runV
 - OCI compliant VM based runtime
 - Uses optimized qemu & KVM.
 - A light weight guest kernel is used.

Clear Containers

kata-runtime

gVisor

Copyright©2018 NTT Corp. All Rights Reserved.
:30

OCI Runtimes

runC - Default OCI specs implementation
 - Isolation based on Namespace, cgroups, secomp & MAC (AppArmor, SELinux)

runV
 - OCI compliant VM based runtime
 - Uses qemu & KVM.
 - A light weight guest kernel is used.

Clear Containers - Hardware-virtualized containers using Intel’s VT-x
 - Utilize DAX “direct access” feature of 4.0 kernel

kata-runtime

gVisor

Copyright©2018 NTT Corp. All Rights Reserved.
:31

OCI Runtimes

runC - Default OCI specs implementation
 - Isolation based on Namespace, cgroups, secomp & MAC (AppArmor, SELinux)

runV
 - OCI compliant VM based runtime
 - Uses qemu & KVM.
 - A light weight guest kernel is used.

Clear Containers - Hardware-virtualized containers using Intel’s VT-x
 - Utilize DAX “direct access” feature of 4.0 kernel

kata-runtime
 - Best of runV & cc-containers
 - 1.0 Release (22nd May, 2018)
 - Under active development

gVisor

Copyright©2018 NTT Corp. All Rights Reserved.
:32

OCI Runtimes

runC - Default OCI specs implementation
 - Isolation based on Namespace, cgroups, secomp & MAC (AppArmor, SELinux)

runV
 - OCI compliant VM based runtime
 - Uses qemu & KVM.
 - A light weight guest kernel is used.

Clear Containers - Hardware-virtualized containers using Intel’s VT-x
 - Utilize DAX “direct access” feature of 4.0 kernel

kata-runtime
 - Best of runV & cc-containers
 - 1.0 Release (22nd May, 2018)
 - Under active development

gVisor

 - Sandbox based containers
 - Intercepts application system call acts like kernel.
 - similar approach as User Mode Linux (UML)
 - Under active development

Copyright©2018 NTT Corp. All Rights Reserved.
:33

Final candidates for Evaluation

High-level Runtime Low-level Runtime

containerD

Dockershim

CRI-O

runC

Kata containers

runV

clear containers

Copyright©2018 NTT Corp. All Rights Reserved.
:34

Why runtimes affect kubernetes  

Copyright©2018 NTT Corp. All Rights Reserved.
:35

Kubernetes Architecture

Kubernetes Worker #1

Kubernetes Worker #n

- Kubernetes offers variety of choices to tune the system

Copyright©2018 NTT Corp. All Rights Reserved.
:36

Kubernetes Architecture

Kubernetes Worker #1

Kubernetes Worker #n

- Kubernetes offers variety of choices to tune the system
- Once rest of components finalized

- for deployment and management runtime is only variable factor.
- For application performance only low level runtime matters.

Copyright©2018 NTT Corp. All Rights Reserved.
:37

Performance benchmarking

 Application deployment performance

 Application Performance

• Container operations (Create, start, stop, remove)

• Containerization / Virtualization overhead.

Copyright©2018 NTT Corp. All Rights Reserved.
:38

Performance benchmarking process

• Prerequisite :
• Pull Sandbox Image
• Pull Container Image

(ubuntu:latest)

Create
- Create & Run PodSandbox

- Create Application Container

Start
- Start Application Container

Stop
- Stop Application Container

Delete
- Delete Application Container

- Stop PodSandbox

- Delete PodSandbox
• Rootfs prepared from Image
• Writable area for container
• CNI plugin invocation for Network

4 Threads x 50

Benchmark Environment

Kernel : linux 4.15
OS : Ubuntu

Architecture: x86_64
CPU(s): 8
Core(s) per socket: 4
Model name: i7-3630QM CPU @ 2.40GHz
Virtualization: VT-x

Copyright©2018 NTT Corp. All Rights Reserved.
:39

runC Performance

Create

Start

Stop

Delete

Seconds
0 0.2 0.4 0.6 0.8

0.19

0.58

0.75

0.64

0.53

0.24

0.03

0.73

0.27

0.19

0.17

0.26

containerd cri-o dockershim

Software versions

Containerd : v1.1.0
cri-o : v1.10.1
Docker : 18.05.0.ce
Runc : v1.0
 git #69663f0bd4b

Performance difference due to high level
runtime

Low-level runtime (runC) is constant in all

cri-o and docker share same graph driver
design, could be reason for high create time.

containerD perform better in almost all case.

Copyright©2018 NTT Corp. All Rights Reserved.
:40

Latency with runC

Time to start

Time to stop

Seconds

0 0.35 0.7 1.05 1.4

0.77

1.39

0.77

0.76

0.46

0.43

containerd cri-o dockershim

Time before application start
running in runC container

Time before resources are
released after application stops

cri-o & containerD both perform
better than docker

In performance, containerD
performs better than cri-o

Less is better

Copyright©2018 NTT Corp. All Rights Reserved.
:41

Kata-runtime Performance

Create

Start

Stop

Delete

Seconds
0 3 6 9 12

0.48

10.34

0.14

1.53

0.62

10.32

0.03

1.65

0.4

10.25

0.09

1.37

containerd cri-o dockershim

*

* - Bug in Stop logic, while invoked through CRI
- Takes < 2 seconds, if done directly through docker or containerD

Software versions

Containerd : v1.1.0
cri-o : v1.10.1
Docker : 18.05.0.ce
kata-runtime: v1.0

Difference is mainly due to high level runtime
performance.

Copyright©2018 NTT Corp. All Rights Reserved.
:42

Latency with Kata

Time to start

Time to stop

Seconds

0 2.75 5.5 8.25 11

10.82

1.67

10.94

1.68

10.65

1.46

containerd cri-o dockershim Frakti

Latency with kata-container is comparable with all high-level
runtimes.

High-level Runtime don’t make much difference if low-level
runtime consume most

Less is better

Copyright©2018 NTT Corp. All Rights Reserved.
:43

kata vs runV vs clear-containers

Create

Start

Stop

Delete

Seconds
0 3 6 9 12

0.32

0.54

0.69

0.6

0.81

1.49

0.35

2.67

0.4

10.25

0.09

1.37

kata + containerd cc-containers + containerd runV + frakti

Software versions

Containerd : v1.1.0
Docker : 18.05.0.ce
Frakti : v1.10.0
runV : v1.0.0

Stop function of cc-containers & runV looks
normal. Hence fix required for kata containers.

Kata containers performance is in-between
runV and cc-runtime.

Copyright©2018 NTT Corp. All Rights Reserved.
:44

Latency with VM based runtimes

Time to start

Time to stop

Seconds

0 2.75 5.5 8.25 11

0.86

1.29

2.3

3.02

10.65

2.27

kata + containerd cc-container + containerd runV + frakti

runV performs for container operations is best
in VM containers.

Kata is still in active development

Less is better

Copyright©2018 NTT Corp. All Rights Reserved.
:45

I/O Throughput

M
b/

s

102

65.6

101

211

Performance Overhead – Low-level runtimes

Average System Load

C
PU

 L
oa

d

3.91

3.173.17

1.62

 runC perform best in both IO throughput and average CPU load.

 kata-containers perform best among VM containers.

 Runtime performance overhead affect application running inside container.

More is better
Less is better

Copyright©2018 NTT Corp. All Rights Reserved.
:46

Workloads  

Copyright©2018 NTT Corp. All Rights Reserved.
:47

• Host functions instead of applications?
• Functions as service
• e.g. AWS Lambda

• Ideal Platform
• Low latency
• High parallelism i.e. high density.
• Low on resources (CPU, Memory)

Serverless

Copyright©2018 NTT Corp. All Rights Reserved.
:48

Serverless platform

containerd + runC cri-o + runC Frakti + runV Any + kata-containers

Latency

Cold start

Warm start

Best

Best

Better

Better

Better

Best

Good

Better

Average

Average

Average

Good

Density Best Good Average Average

Security Good
(namespace + seccomp +

SELinux)

Good
(namespace + seccomp +

SELinux)

Best
(VM based)

Best
(VM Based)

Stability

Support Cycle

Stable

(defined support cycle for
each release)

Stable/Best with Openshift

(Not defined)

Stable

(managed by
hyper.sh)

(not defined)

Under Active development

(Not defined)

Copyright©2018 NTT Corp. All Rights Reserved.
:49

• Mostly applications are of type Micro services.
• Ideally immutable
• Quick scale up and scale down.
• Ideal Platform

• Low latency for start application and free resources.
• Better utilize the host system.

Peak hour demand / Micro Services

Copyright©2018 NTT Corp. All Rights Reserved.
:50

• Short Lived containers
• Frequent updates
• Fast recovery is important.
• Low on resources

Mean Time To Recover (MTTR) - DevOps

Copyright©2018 NTT Corp. All Rights Reserved.
:51

Micro-services / MTTR

containerd + runC cri-o + runC Frakti + runV Any + kata-containers

Latency Best Better Good Average

Density Best Better Average Good

Security Good
(namespace + seccomp +

SELinux)

Good
(namespace + seccomp +

SELinux)

Best
(VM based)

Best
(VM Based)

Stability

Support Cycle

Stable

(defined support cycle for
each release)

Stable/Best with Openshift

(Not defined)

Stable

(managed by hyper.sh)
(not defined)

Under Active development

Copyright©2018 NTT Corp. All Rights Reserved.
:52

• Migrated application.
• Stateful containers.
• Hard to scale containers.
• Requirements

• Stability
• Security
• Performance
• Migration

Long running containers

Copyright©2018 NTT Corp. All Rights Reserved.
:53

Long running containers

containerd + runC cri-o + runC Frakti + runV Any + kata-containers

Stability

Support Cycle

Best

(defined support cycle for
each release)

Stable/Best with Openshift

(Not defined)

Good

(managed by hyper.sh)
(not defined)

Under Active development

(not defined)

Security Good
(namespace + seccomp +

SELinux)

Good
(namespace + seccomp +

SELinux)

Best
(VM based)

Best
(VM Based)

Performance
Overhead

Best Best Average Better

Migration Required Required Required Required

Governance CNCF + OCI Kubernetes Incubator +
OCI

Kubernetes + hypersh OpenStack Foundation

Copyright©2018 NTT Corp. All Rights Reserved.
:54

• CRI and OCI enable more choices for container runtimes.
• For Cloud Native workloads, Linux containers based runtimes suite

better.
• High level runtime performance do not matter much for long running

containers, So low level runtime performance & capabilities become
focus.

• VM based runtimes are promising, but still need some time to reach
flexibility and usability as Linux containers runtime.

• Migration of monolithic applications / high security applications to modern
platform like kubernetes will get boost with VM based runtimes.

Summary

Copyright©2018 NTT Corp. All Rights Reserved.
:55

• Runtime getting ready for OCI complaint
• rkt - container runtime from CoreOS

• https://github.com/rkt/rkt
• https://github.com/rkt/rkt/issues/3368

• gVisor - Sandbox based containerization
• https://github.com/google/gvisor

• railcar – linux containers in implementation in rust
• https://github.com/oracle/railcar
• slow development

• crun – linux containers in implementation in C
• https://github.com/giuseppe/crun
• Fully featured but lack clarity on maintenance and support.

Few more OCI runtimes

https://github.com/rkt/rkt
https://github.com/rkt/rkt
https://github.com/rkt/rkt/issues/3368
https://github.com/rkt/rkt/issues/3368
https://github.com/google/gvisor
https://github.com/google/gvisor
https://github.com/oracle/railcar
https://github.com/oracle/railcar
https://github.com/giuseppe/crun
https://github.com/giuseppe/crun

Copyright©2018 NTT Corp. All Rights Reserved.

Thank You

