
The Future of Security
is in Open Silicon

Linux Security Summit

2018

August 28, 2018

Joel Wittenauer - Embedded Software Architect

Rambus Cryptography Research

2

• About Rambus Cryptography Research

• Spectre/Meltdown/Foreshadow

• Introduction to the CryptoManager Root-of-Trust (CMRT)

• CMRT Hardware

• CMRT Software

• Linux Applications

Agenda

3

Corporate Facts
• NASDAQ: RMBS, Inc. in 1990; IPO 1997
• Headquartered in Sunnyvale, CA
• Operations throughout North America,

Europe & Asia
• ~800 employees
• ~2,500 patents & applications

Markets Served
Data Center
• Acceleration + lower power
• System-level architectures
• Innovative products to support needs

Mobile Edge
• Secure endpoints = secure data
• Hardware root-of-trust
• Value and monetization for

end-user services

Rambus At-a-Glance

Advanced
Memory Research

Storage Class
Memory

DDR5

Cryogenic
Computing

Next-Generation
Secure Payment

Next-Generation
Smart Ticketing

Innovations &
ArchitecturesCores

DDRx PHYs
SerDxes PHYs

Cores

DDRx PHYs
SerDes PHYs

Provisioning

Mobile Payments
Smart Transport
Security Service

ChipsArchitecture
License+

Architecture
License+

Secure
Smart Cores

Data Center

Mobile Edge

Cores

Memory PHYs
SerDes PHYs

Buffers and
Networking

4

• About Rambus Cryptography Research

• Spectre/Meltdown/Foreshadow

• Introduction to the CryptoManager Root of Trust (CMRT)

• CMRT Hardware

• CMRT Software

• Linux Applications

Agenda

5

• Spectre/Meltdown are vulnerabilities found in Intel, AMD
and some ARM CPUs – reported in January 2018

• Foreshadow is a related vulnerability for Intel CPUs –
reported August 2018

• Spectre research team included CRI founder Paul Kocher
and Rambus security researcher Mike Hamburg

• All three vulnerabilities take advantage of CPU performance
enhancements
• E.g. speculative or out-of-order execution

• Documented in CVE-2017-5715, CVE-2017-5753, CVE-2017-
5754, CVE-2018-3615, CVE-2018-3620 and CVE-2018-3646

Spectre/Meltdown/Foreshadow

6

Spectre/Meltdown/Foreshadow

“…beyond short-term solutions such as patching,
the semiconductor industry should seriously
consider designing chips that run sensitive
cryptographic functions in a physically separate
secure core, silo-ed away from the CPU. This design
approach will go a long way in helping to prevent
vulnerabilities that can be exploited by Meltdown
and Spectre*.” – Mike Hamburg, Rambus security
researcher

*Also Foreshadow

7

• About Rambus Cryptography Research

• Spectre/Meltdown/Foreshadow

• Introduction to the CryptoManager Root of Trust (CMRT)

• CMRT Hardware

• CMRT Software

• Linux Applications

Agenda

8

CryptoManager Root of Trust (CMRT)

Secure Processing

Flexibility to run custom
secure applications
inside the CMRT
boundary

CryptoManager Root of Trust

Custom
RISC-V

CPU

Secure
Memory

Crypto
Accelerators

(AES, SHA, others…)

General
Processing

9

• Secure data storage

• Secure key storage

• Device personalization

• Key and data provisioning

• Authentication

• Attestation

• User data privacy

• Secure boot

• Secure firmware update

• Secure communication

• Runtime integrity checking

• Cryptographic acceleration

• Secure protocol
implementation

• Secure debug

• Feature/configuration/SKU
management

Use Cases

CMRT can support a wide range of use cases, including:

10

Some brief CMRT terminology

11

• Root
• Not a root user or certificate authority

• For the CMRT, a root is an entity that is composed of an ID and
permissions set for access to CMRT assets

• The root defines the security context in which user applications execute

Some brief CMRT terminology

12

• Root
• Not a root user or certificate authority

• For the CMRT, a root is an entity that is composed of an ID and
permissions set for access to CMRT assets

• The root defines the security context in which user applications execute

• Container
• Not related to Docker or other OS-level virtualization systems

• For the CMRT, a container is a secure, user-privilege application that
runs under the context of a root (defined above)

Some brief CMRT terminology

13

• Root
• Not a root user or certificate authority

• For the CMRT, a root is an entity that is composed of an ID and
permissions set for access to CMRT assets

• The root defines the security context in which user applications execute

• Container
• Not related to Docker or other OS-level virtualization systems

• For the CMRT, a container is a secure, user-privilege application that
runs under the context of a root (defined above)

• Lesson: Don’t let hardware engineers name things

Some brief CMRT terminology

14

• About Rambus Cryptography Research

• Spectre/Meltdown/Foreshadow

• Introduction to the CryptoManager Root of Trust (CMRT)

• CMRT Hardware

• CMRT Software

• Linux Applications

Agenda

15

• CPU
• A custom CPU designed by Rambus

specifically for the CMRT

• Based on the open-source RISC-V ISA
and selected standard extensions

• Supports three privilege levels –
machine, supervisor, user

• Memory Protection Unit (MPU)
• Sets regions of memory for access for

one or more privilege levels (machine,
supervisor or user) and access type
(R,W,X)

• MPU registers can be “locked” until the
next CMRT reset

CPU/MPU

16

• CMRT uses One-Time Programmable
(OTP) memory for non-volatile memory
(NVM) storage
• Writes of 0->1 are permanent

• OTP stores CMRT configuration:
• Device ID

• Lifecycle state

• Device unique key

• A table of root IDs and permissions are
stored in OTP

• General purpose NVM
• Access to ranges of OTP addresses can be

restricted by permissions

OTP

17

• Hardware AES core for data
encryption/decryption
• Multiple versions available, all with support for

128- and 256-bit keys:

• Hardware support for different modes available,
including ECB, CBC, CFB, CTR, GCM

• Hardware SHA-2 core
• Supports both hashing and HMAC

• SHA224/256/384/512

• Public key engine (PKE)
• RSA/RSA-CRT 1, 2, 3 and 4K

• ECDH and ECDSA with many curves:
• NIST curves

• Ed25519

• Other curves available

Crypto Engines

18

• Responsible for deriving and managing
keys

• Uses NIST-compliant key derivation
algorithm to derive volatile keys from
base keys

• Operates independent of CPU and can
deliver keys to hardware cores without
exposing them to CPU

Key Derivation Core

19

• Key Transport Core (KTC) manages key
interfaces outside the CMRT boundary

• NIST-compliant True Random Number
Generator (TRNG)/Deterministic
Random Bit Generator (DBRG)

• DMA Controller for fast movement of
bulk data to/from SRAM, crypto cores,
external memory, etc.

Other important cores

20

• About Rambus Cryptography Research

• Spectre/Meltdown/Foreshadow

• Introduction to the CryptoManager Root-of-Trust (CMRT)

• CMRT Hardware

• CMRT Software

• Linux Applications

Agenda

21

• SW stack running on the CMRT
CPU is divided into three
privilege levels:

• User: Containers

• Supervisor: OS (Zephyr), HW
drivers

• Machine: Security-sensitive
code/internal secure boot

CMRT SW Architecture

22

• Located in ROM

• Begins the secure boot of the
CMRT

• A chain of trust is built from
ROM, through images in OTP and
flash

• Subset of device drivers included
with bootloader

First-stage Bootloader

23

• The most security-sensitive code is
stored in trusted flash image
• Securely loaded during CMRT boot

process

• When a user container is loaded by
the CMRT, the security monitor:
• Verifies root “ownership” of the

container via root table in OTP
• Verifies the digital signature of the

container code
• Verifies the permissions requested

by container are less than or equal
to root

• Applies hardware permissions to
respective cores

• Handles root management

Security Monitor

24

• Modified version of the Zephyr OS
• Supports application loading

• Kernel/user memory separation

• *nix-like device driver interface
• open/close/ioctl…

• All Rambus modifications are
controlled by Kconfig

• Provides container’s access to HW
cores

• First line of permissions
enforcement
• Including some software-only

permissions

Supervisor OS/Kernel

25

• Containers are customer-
developed applications

• Each container is signed with a
private key associated with a
specific root

• Containers have associated
permissions that control access to
keys and hardware resources

• Permissions are also limited in HW
to those available to the root
associated with container

• Container libraries include C-
runtime and a Global Platform TEE-
compliant crypto library

Containers

26

Building and executing containers

27

Building and executing containers

Permissions

Root ID

SHA256()

• Roots are provisioned during
device manufacturing

• Can also be done later by
containers with sufficient
permissions

28

Building and executing containers
• Container permissions must be a

subset (less than or equal) of the
root’s permissions

• After building the container
attach footer with
• Container ID
• Requested permissions

• Sign the binary + Footer
• Attach the signature and public

key to the footer

Set Container Permissions

SHA256()

Sign()

29

Building and executing containers
• Copy the container binary+footer to the

CMRT’s SRAM
• The CMRT:

• Determines if container’s public
key matches existing root

• Verifies container signature
• Evaluates requested permissions
• Applies permissions to hardware
• Allows the container to execute

30

• Existing RISC-V port
• Zephyr is a Linux Foundation project
• Includes a Formal Governing Board, Technical Steering Committee and

Security Committee

• Great ecosystem
• Large, active number of contributors
• Proper QA and CI in place
• Community guidelines
• Contribution reviews

• All CMRT software is built using the flexible Zephyr build system
• Bootloaders, security monitor, OS/kernel and containers

Why Zephyr?

31

• About Rambus Cryptography Research

• Spectre/Meltdown/Foreshadow

• Introduction to the CryptoManager Root-of-Trust (CMRT)

• CMRT Hardware

• CMRT Software

• Linux Applications

Agenda

32

• Rambus offers a CMRT Linux Software Development Kit (SDK)
• The SDK provides:
• Full container development environment
• Out-of-tree reference kernel module implementations
• RISC-V GCC 7 suite
• CMRT QEMU emulator for fast container development

• Enables development prior to the hardware availability
• Easier to use/debug than FPGAs
• Easier to scale CI

• Reference implementation available on the Xilinx Zynq-7000
evaluation board

CMRT Linux SDK

33

• The SDK’s reference Linux device driver:
• Loads/unloads trusted containers

• Provides an interface for userspace applications to reach
the CMRT

• Applications are limited only by one’s imagination

CMRT Device Driver

34

• The SDK’s reference Linux device driver:

• Loads/unloads trusted containers

• Provides an interface for userspace applications to reach the
CMRT

• Applications are limited only by one’s imagination

• …and available CMRT SRAM

• Note that there are mechanisms available to “chain” CMRT
containers together to get around SRAM limitations

CMRT Device Driver

35

• Linux crypto engine module
• Similar to examples in drivers/crypto/*/

• Requires a general purpose crypto container with a
compliant interface

• Trusted Platform Module Emulation
• Similar to examples in drivers/char/tpm/

• Reduces need for extra part on PCB

• Requires a container that exposes the TPM interface

Other possible applications

36

Questions?

37

Thank you!
Joel Wittenauer

joel.wittenauer@cryptography.com

Rambus Cryptography Research

