
Elliotte Rusty Harold
elharo@ibiblio.org
August 2018

From XML to Flat Buffers:
Markup in the Twenty-teens

Warning!

● XML

● JSON

● YAML

● EXI

● Protobufs

● Flat Protobufs

The Contenders

What Uses What

From technology, tools, and systems
I use frequently. There are many
others.

XML JSON YAML EXI Protobuf Flat
Buffers

App Engine
Standard
Java

X X

App Engine
Flex

X

Kubernetes X X

Eclipse X

Maven X

Ant X

Google
“APIs”

X X X X X

Publishing X

XML

● Very well defined standard

● By far the most general format:

○ Mixed content

○ Attributes and elements

● By far the best tool support. Nothing else is close:

○ XSLT

○ XPath

○ Many schema languages:

■ W3C XSD

■ RELAX NG

XML

● Most composable for mixing and matching markup; e.g.
MathML+SVG in HTML

● Does not require a schema.

● Streaming support: very large documents

● Better for interchange amongst unrelated parties

● The deeper your needs the more likely you’ll end up here.

More Reasons to Choose XML

● Relatively complex for simple tasks

● Limited to no support for non-string programming types:

○ Numbers, booleans, dates, money, etc.

○ Lists, maps, sets

○ You can encode all these but APIs don’t necessarily recognize or support them.

● Lots of sharp edges to surprise the non-expert:

○ 9/10 are namespace related

○ Attribute value normalization

○ White space

● Some security issues if you’re not careful (Billion laughs)

Why Not XML?

● Simple for object serialization and program data. If your data is a
few basic types (int, string, boolean, float) and data structures
(list, map) this works well.

● More or less standard (7-8 of them in fact)

● Consumption libraries for essentially all significant languages

JSON

● It is surprising how fast needs grow past a few basic types and data structures.

● No comments!

● Some security issues early on, though these are mostly resolved.

● Implicit schemas.

● Usually the entire document is parsed up front before any data is available to the consumer. Not good
for streaming and very large documents.

Why Not JSON?

● No good, cross language solutions for:

○ Schemas

○ Query language

○ Transform language

○ E.g. unit tests for libraries.json

Limited Tool Support

● ~7 different purported standards

● Areas of difference

○ Text encoding

○ Comments

○ Trailing commas in lists

○ How big can an int or a float be? What happens if one is too big?

○ NaN and Inf

○ Duplicate keys

● Works better in smaller, more homogenous environments; e.g. libraries.json

Standards and tools are incomplete and
inconsistent.

● Much loved by Python programmers

○ Not surprisingly for something that comes out of Python,
indentation matters a great deal; for good or ill

● Technically a superset of JSON

● Most human legible of the formats discussed

● Supports references

● Streams well, unlike JSON and perhaps more easily than XML

YAML

● Specification is very weak compared to XML and even JSON.

● It’s surprisingly hard to write a fully conformant YAML parser that correctly handles all the variations
and edge cases.

● Consequently not all parsers are fully conformant. You MUST test your parser library to make sure it
can handle the data you expect to throw at it.

● Arguably dangerous for consuming untrusted user input, especially with data binding. Parser bugs
abound.

● Tool support is weak compared to JSON and extremely weak compared to XML.

Why Not YAML?

● Efficient XML Interchange

● Binary XML

● Limited uptake, limited tool support

● For size, limited advantage compared to gzipped XML. Maybe some small
speedups.

● Bottom Line:

○ If you need XML, use XML.

○ If you need something smaller and faster, go to next slide.

EXI

● Wicked Fast

● Very Compact

● Similar data structures to JSON: basic programming types like int and boolean,
along with lists and structs.

● Used by gRPC. Sweet spot for protobufs: communication within a distributed
program that is nonetheless a unified whole that just happens to run on multiple
computers.

● Used internally at Google

● Major languages (C++, Java, Go, Python) are well supported. Others less so.

Protobufs

● Opaque binary format: relatively hard to inspect and debug.

● Size is limited to what you can comfortably deserialize into a single object.

● Schema is absolutely required. Must be present on both ends. You can’t process a
protobuf without knowing the schema.

● Even more tightly coupled to classes and generated code than JSON. E.g. structs rather
than maps.

● Versioning and updates are tricky.

○ Can’t remove anything

○ Watch out for required fields

● Works better behind the firewall than across the Internet

Why Not Protobufs?

● Like protobufs but you don’t have to load the whole thing.

● Even faster than protobufs

● Limited support for now

Flat Buffers

Sweet Spots: XML

● Narrative content: words in a row meant for people to read. Books, articles, email, etc.

● Streaming data

● Complicated information hierarchies that don’t map easily to standard programming data structures

● Unknown schema, extensible formats

● Communication between different parties without pre-existing agreements

● Human editable

Sweet Spots: JSON

● Object and database serialization

● Program output that will be consumed by other programs. E.g. service APIs

Sweet Spots: YAML

● Config files

● Human editable

Sweet Spots: EXI

● I can’t think of any

Sweet Spots: Protobufs

● Execution Speed (or size, but usually speed) is the most
important consideration; and you’re willing to invest a lot more
money, time, and staff to save milliseconds.

● Object and database serialization

● Program output that will be consumed by the same or closely
related programs. E.g. service APIs that assume the use of a
vendor supplied client library to access.

Sweet Spots: Flat Buffers

● Mobile

● Games

Use the Right Tool for the Job

Questions? Disagreements? Rotten Tomatoes?

