Enabling Developers with Open Source

Nicholas Parks, Cloud Architect, Kenzan

@nparksnyc
Agenda

Introduction
- Background
- What is Developer Enablement?
- Cloud, Containers, Canary, Continuous Delivery

Hello Capstan
- What is it?
- What do I use it for?
- How does it work?

Demonstration
- Use A Capstan Created Environment
- How can I modify?
- Questions
Business Drivers for Developer Enablement

Maximize Creative Hours to work on:

<table>
<thead>
<tr>
<th>User Experiences</th>
<th>Improved Features</th>
<th>Smarter AI/ML</th>
</tr>
</thead>
</table>

Not on…

- Why did my build break?
- Which server did it deploy to?
Business Drivers for Developer Enablement

You pay for “Value Delivery”

Customers (External/Internal) Open Source Community Greater Business Ecosystem

No one will accept...
“Our deployment process is holding up releases to customers”
Hurdles

Getting Started with Containerized Apps?

Moving to the cloud?

Release all day, every day?

Time to bootstrap containerized app experience

Existing Continuous Delivery Skill Deficit

How to “Solve” Operational complexity

Existing Automation = Rube Goldberg Fragility

Developers may not have extensive cloud experience

Where to start automating?

How do I know that software is “good” to release?
What is Developer Enablement?

Enable developers to execute as many facets of the creative process independently and on-demand.

Cloud capable with the latest software packaging technology (containers) that can perform automated canary analysis in a continuous, repeatable, duplicatable way.
Cloud and Containers

Cloud
Any IaaS that provides elastic behavior transparently to the creator.

Provides a place to run what you created without needing to know all inherent machinations

The IaaS experience could be a PaaS experience.

Containers (with orchestration)
Runtime environment where the lifecycle is managed without the developer

Packaging of the app/feature/service, independent of the IaaS

Packaging on the local development environment is the same as in the enterprise runtime
What are canary releases?

A change to a small subset of production users to gauge the fitness of the software before release to all customers.

Ability to execute one last point of quality control in production before fully committing to the new code/feature/hotfix/etc.

Canary is not new, but Generic Automated Canary Analysis is new(er) and uses statistical methods to automatically make this fitness determination.
Continuous Delivery/Deployment

Push the best, all day every day

Continuous Delivery is the orchestrated manifestation about how software is delivered within an organization regardless of whatever SDLC is followed.

With *Continuous Deployment*, this release occurs *without* human intervention.
...in a lean, post-agile, software company, Continuous Delivery offers a possibility to improve the development process, and adopting it is beneficial when aiming for a development culture that can fluently move to new business directions.

Marko Leppänen et Al. Towards post-agile development practices through productized development infrastructure.
Capstan
https://github.com/kenzanlabs/capstan
Capstan

Kenzan’s new open source solution

Provision disposable containerized CI/CD environment in minutes

Github / Kenzan Labs / capstan

Technologies
Terraform
Cloud SDK
Spinnaker

IAAS Provides
Kubernetes
Capstan

Infrastructure as Code (IaC)

Immutable Infrastructure

Explicit display of tool usage and configurations

Container focus
Need to get your developers quickly acquainted to developing containerized applications?

No longer burdened with training developers on how to deploy to Kubernetes.

If you can push your container into a supported repository and use Spinnaker than you can use Capstan.

Need a play place? Need to deliver apps that also interact with KubeFlow?

With Spinnaker you can push apps into a Kubernetes Cluster that also has KubeFlow deployed.
Trying to put together infrastructure-as-code, a container platform, and software delivery platform?

Capstan provides a reference implementation that your organization can bootstrap from.

How do I operate my platform in the cloud?

How do I perform IaaS changes or Kubernetes upgrades?

Capstan provides a reference architecture for hosting containerized applications.
Capstan

1. Create Service Account
2. Create GKE
3. Configure Pub Sub Topic
4. Configure Cloud Storage
5. Create Tool/Tunnel Instance

Tools VM

Deploy Jenkins
Deploy Spinnaker
Capstan

How does it work?

In Google Cloud…
1. Setup Trial Account
2. Create GCP Project
3. Create & Download Service Account JSON

On Your Workstation
1. Install the Basics, SDK & Kube Components (optional)
2. Clone Github / Kenzan Labs / Github
3. Copy Service Account JSON as
 $ git clone
 $ cd capstan
 $ git checkout 2018.q3.beta.gcp
 $ cp ~/Downloads/<service_account>*json \
 gcp/terraform/gcp-account.json
4. ...other steps in GCP Readme
Validate your GCP project

Connectivity

To make sure we don't stumble into problems later, you need to perform the following:

1. Create a Service account with 'role/owner' for Terraform. Call it `terraform-admin` (or anything)
 i. If you are presented with the option to generate a JSON key file do and save it for later.
2. Create a micro instance in `us-central1-a` with the service account `terraform-admin` (or wha
3. Now leave your browser and open a terminal window
4. Perform a `gcloud init` if you have not done so as part of installing gcloud
 i. Make sure your your environment is referencing the current project (via `gcloud info`)
5. From your laptop perform a `gcloud ssh` into said instance. You can get the full `gcloud comm
 arrow next to the SSH button for the instance.
 i. This is to check connectivity between your laptop to GCP in a manner similar to what terra

If everything happened without issue then we are good. You no longer need this test instance. You can the service account to set-up terraform.

Enable Google Project Features

After verifying connectivity, we need to enable services/api endpoints for terraform.

Using the terminal window where you just attempted `gcloud ssh` perform the following commands:

1. `gcloud services enable container.googleapis.com`
2. `gcloud services enable iam.googleapis.com`
Plan: 9 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?
Terraform will perform the actions described above. Only 'yes' will be accepted to approve.

Enter a value: yes

random_integer.spin_bucket: Creating...
max: "" => "99999"
min: "" => "1"
result: "" => "<computed>"
random_integer.spin_bucket: Creation complete after 0s (ID: 89144)
google_service_account.halyard_toolsacct: Creating...
account_id: "" => "halyard-tunnel-tools"
display_name: "" => "halyard-tunnel-tools"
email: "" => "<computed>"
name: "" => "<computed>"
project: "" => "<computed>"
unique_id: "" => "<computed>"
google_service_account.spinnaker: Creating...
account_id: "" => "gcp-spinnaker"
display_name: "" => "gcp-spinnaker"
email: "" => "<computed>"
name: "" => "<computed>"
project: "" => "<computed>"
unique_id: "" => "<computed>"
google_pubsub_topic.gcr_event_stream: Creating...
name: "" => "gcr"
project: "" => "<computed>"

Apply complete! Resources: 9 added, 0 changed, 0 destroyed.

unmnl (remote-exec): Success
unmnl (remote-exec): + Run `hal deploy connect` to connect to Spinnaker.
unmnl (remote-exec): ===========
unmnl (remote-exec): - Hopefully Spinnaker Deployed -
unmnl (remote-exec): ===========
unmnl (remote-exec): ===========
unmnl: Creation complete after 16m0s (ID: halyard-tunnel)
ed, 0 changed, 0 destroyed.

te-exec): Success
te-exec): + Run `hal deploy connect` to connect to Spinnaker.
te-exec): ===========
te-exec): - Hopefully Spinnaker Deployed -
te-exec): ===========
te-exec): ===========
te-exec): ===========
te-exec): ===========

 tion complete after 14m45s (ID: halyard-tunnel)
Using Capstan

Delivery Environments
- Spinnaker
- Jenkins
- Kubernetes

Using
- Look at existing pipeline:
 - Simple
 - Canary
 - Build One

Being Open Source
- How can you change this?
- Service Delivery with ITSM