## Elivepatch Flexible distributed Linux Kernel live patching

Alice Ferrazzi

## Summary

- Live patch explanation
- Current live patch services
  - Motivation for elivepatch
- Elivepatch solution
  - Implementation
  - Challenge
  - Status
  - Future Work
- Conclusion

#### kernel :~ \$ whoami

#### • Gentoo

- Gentoo Kernel Project Leader
- Gentoo Kernel Security
- Gentoo board member
- Gentoo Google Summer of Code administrator and mentor for rust Gentoo project
- Cybertrust Japan
  - OSS Embedded Software Engineer
- Researcher
  - ACM SIGOPS member
  - Presented elivepatch as poster at SOSP 2017

## This project was part of Google Summer of Code 2017 for the Gentoo organization.

#### Live patch explanation

#### Live patch

#### Modify the kernel without the need to reboot.

## Why

- Downtime is expensive (containers, supercomputers)
- Security (vulnerability time shorter)

#### Where

- Embedded
- Mobile
- Desktops
- HPC (complex scientific computations)
- Cloud
- Any computer under heavy load



### Kgraft

## Suse Open Source live patching system that is routing the old function gradually.

#### Kpatch

# Red Hat Open Source live patching system and use ftrace and stop\_machine() for route functions toward the new function version.

## Livepatch

Livepatch is a hybrid of kpatch and kgraft. Livepatch has been merged into the kernel upstream.

Kpatch-build can work with both kpatch and livepatch for creating the live patch.

#### Livepatch is just a module

. . .

#### Livepatch module problem

#### A module that takes just about 1+ hour to compile in a modern server

## At Gentoo, we know what means to compile something for more than 1 hour...



## Gentoo solution to compile for 1+ hour compilation problem

- Gentoo "binary host"
- Pre-compiled binary

## What options do we have for compiling livepatch modules?

#### Current existing livepatch services

#### Current vendor solutions

- Oracle, Ksplice (support only Oracle Linux kernels)
- Suse Linux Enterprise Live Patching (support only Suse Kernels for one year)
- Canonical Live Patch (support only Ubuntu 16.04 LTS and Ubuntu 14.04 LTS)
- Red Hat live patch (Support only Red Hat kernel)

#### Motivation for elivepatch

#### Problems of vendor solutions

- trusting on third-party vendors
- Lacking support for **custom kernel configurations**
- Lacking support for **request-driven** costumization
- Lacking **long term** support
- Closed source

#### elivepatch solution

## elivepatch

A web service framework to deliver Linux kernel live patches

- Supports custom kernel configurations
- User participation via **request-driven** customization
- Open source

#### Vendor solutions representation



## Elivepatch solution

**Elivepatch Client** 



#### Implementation

Elivepatch-server (Main language: Python) Flask + Flask-Restful + Werkzeug (not dependent)

Elivepatch-client (Main language: Python) Requests + GitPython

#### Challenges

## Challenges with elivepatch

- Some patches require manual modification to converted to live patches
- Reproducing the build environment can be difficult:
  - Differences in compiler versions
  - Variations in the compiler and optimization flags
  - Incompatible machine architectures (solaris, hpc)

31

### Incompatibility with GCC

CCFLAGS and non vanilla gcc, can sometime broke elivepatch.

#### Current status

### Elivepatch status

- First open source release 0.1 on 2017/9/06
- Packaged for Gentoo
- Presented as poster at SOSP 2017
- Close collaboration with kpatch mainteiners

#### Future work

#### Future work

- Automate livepatch conversion
- Increasing scalability using containers and virtual machines
- Livepatch signing
- Kernel CI\CD check

### Automate livepatch conversion

- Check patch for problems during conversion
- Suggest changes to patch for conversion
- Interest also for upstream to kpatch

https://github.com/aliceinwire/elivepatch\_lintian

gentoo\_07 ~/elivepatch\_lintian # python main.py --file ../test\_01.patch Namespace(file='../test\_01.patch', id=None) Opening local patch file Patch inside \_\_init functions may require a load hook. (https://github.com/dynup/kpatch/blob/master/doc/patch-author-guide.md#init-code-changes) 'static void \_\_init create\_trampoline(unsigned long addr)' Patch inside \_\_init functions may require a load hook. (https://github.com/dynup/kpatch/blob/master/doc/patch-author-guide.md#init-code-changes) 'void \_\_init functions may require a load hook. (https://github.com/dynup/kpatch/blob/master/doc/patch-author-guide.md#init-code-changes) 'void \_\_init kdump\_setup(void)' Patch inside \_\_init functions may require a load hook. (https://github.com/dynup/kpatch/blob/master/doc/patch-author-guide.md#init-code-changes) 'void \_\_init setup\_kdump\_trampoline(void)' gentoo\_07 ~/elivepatch\_lintian # \_\_

#### Multi distribution

Solve distributions compatibility issues Current target:

- Debian
- Fedora
- Gentoo
- Android

### Elivepatch client on Debian

root@debian-amd64:~/elivepatch-client# clear root@debian-amd64:~/elivepatch-client# PYTHONPATH=/root/elivepatch-client python3 bin/elivepatch --kernel 4.9.0 --url http://192.168.122.2:5000 --debug --version --config /boot/config-4.9.0-6-amd64 --patch ~/main patch --distro debian Namespace(clear=False, conf\_file=None, config='/boot/config-4.9.0-6-amd64', cve=False, debug=True, distro='debian', kernel\_version='4.9.0', patch='/root/main.patch', url='http://192.168.122.2:5000 ', version=True) List of current patches: F1

This session uuid: 5cadb73d-cd16-4a08-9648-5398b4b56e3d debug: kernel version = 4.9.0 incremental\_patches: [] [('main\_patch', ('main.patch', <\_io.BufferedReader name='/root/main.patch'>, 'multipart/form-data', {'Expires': '0'})), ('config', <\_io.BufferedReader name='/tmp/tmpl3\_cv\_v2'>, 'multipart/form-data', { Expires': '0'}))] send file: {'Response': 'debian is not yet supported'} livepatch not received root@debian-amd64:w/elivepatch-client#

#### Work in progress...

https://asciinema.org/a/187738

p.s. Gentoo kernel is still needed

## Livepatch signing

- Implementing livepatch module signing in the server
- Implementing signing verification for the client

## Kernel CI/CD checking

• Implement a buildbot plugin for testing elivepatch

[You can test your livepatch with the same settings and hardware as where you want to deploy it]

#### Conclusion

## Epilogue

- Live patch is a module that takes time compiling
- Live patch vendor service solutions solving the compilation problem
- Elivepatch solution

## With the diffusion of embedded systems and robotics,

## Livepatch services will become always more important

If you are interested in contributing, Elivepatch is welcoming every form of contributions