
Does Making The Kernel Harder Make
Making The Kernel Harder?

Casey Schaufler

Intel Open Source
Technology Center

Casey Schaufler

Kernel developer from the 1970’s

Supercomputers in the 1990’s

Smack Linux Security Module

Security module stacking

2

Photo Curtesy Ann Forrister

tl;dr

Yes

Why Don’t We Think The Kernel Is
“Hard”?

It’s too easy to cause damage

5

✢Buffer overflow

✢ Index underflow

✢Stack stomping

People who want to do damage are too clever

6

✢Buffer overflow attacks

✢ Invalid parameters

✢Return oriented programming

By Producers Releasing Corporation - The Devil Bat movie, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=11451565

But that’s not new, is it?

Old as the C compiler

8

✢The C language simplifies

✢ Memory organization

✢ Control flow

✢C is not strongly typed

Efficient and convenient

✢struct ip_msfilter {

✢ . . .

✢ __u32 imsf_numsrc;

✢ __be32 imsf_slist[1];

✢};

✢u = ipm->imsf_slists[index];

Clever and precise

✢union tcp_word_header {

✢ struct tcphdr hdr;

✢ __be32 words[5];

✢};

✢twh->words[3] = 0x8675

Why would I want to give that up?

You probably don’t

✢Strongly typed languages have their own issues

✢Object oriented programming adds overhead

✢The code base is really big

“Strong typing is
for weak minds”
–
Tom Van Vleck?
James Gosling?

There are things we can do

✢Use the typing that is available

✢Fix what we know to be dangerous

✢Prepare for failures

Typing? How does that help?

refcount_t

✢Allocated object reference counts

✢Should never be 0

✢Detect use of freed object

What do we know is dangerous?

String functions

✢strcpy(dest, src);

✢strncpy(dest, src, strlen(src));

H e r e w e G o !

Automatic arrays

✢int func(struct conp *p, int count)

✢{

✢ struct conp controls[count];

Casts

✢struct cred *cred = (struct cred *cred) &i;

✢temp = (unsigned short)((int)(temp) + shift);

It’s not that they can’t be used safely

✢Checking may be expensive

✢Try to find all the callers

Stacks

Convenient for function parameters

✢Push on call

✢Pop on return

✢Hardware accelerated

Jan Łukasiewicz

https://en.wikipedia.org/wiki/Jan_%C5%81ukasiewicz

Convenient for mucking up

23

previous function
arguments and stuff

function that was called
arguments and stuff

function
arguments and stuff

Harder to get the wrong stack data

24

previous function
arguments and stuff

function that was called
arguments and stuff

function
arguments and stuff

gap

gap

Erase what’s no longer needed

25

previous function
arguments and stuff

function that was called
arguments and stuff

function
arguments and stuff

gap

gap

A random thought

Attackers and developers hate randomization

✢For the same reasons

✢Real addresses are needed

✢Log are less useful

✢Debuggers get buggered

Structures

struct agamemnon {

struct list_head *list;

struct cred *cred;

u64 flags;

u32 banners;

u32 bunting;

};

__randomize_layout

struct agamemnon {

u32 banners;

struct list_head *list;

u32 bunting;

struct cred *cred;

u64 flags;

};

__no_randomize_layout

Stack pages are just pages

29

previous function
arguments and stuff

gap

gap

function
arguments and stuff

gap

function that was called
arguments and stuff

gap

other stuff

gap

other stuff

other stuff other stuff

other stuff other stuff

gap

Functions can go in any order

30

ssrbq_init

ssrbq_reset

ssrbq_rehash

ssrbq_compute

ssrbq_teardown

ssrbq_init

ssrbq_reset

ssrbq_rehash

ssrbq_compute

ssrbq_teardown

Do I have To Worry About
Performance?

Does the sun set in the west?

32

True story

✢There is no measurable impact,
can I check in?

✢ I found one case with 2%
impact, can I check in?

✢ I fixed the performance, can I
check in?

✢No, you have inadequate
benchmarks.

✢No, you have demonstrated
negative impact.

✢No, your benchmarks are not
good enough.

33

Performance trumps security more often than not

✢Performance is quantitative

✢Easy to measure

Vulnerability is quantum

✢Don’t know how it could
possibly be vulnerable

✢Hypothetically vulnerable

✢Demonstrably vulnerable

✢Exploited

Vulnerable?0

50

100

Percentage of Concern

Vulnerable?

Is It Worth The Bother?

Code Churn

✢180+ files with refcount_t

✢500+ instances

✢Lots more to do

37

Runtime overhead

✢Hardened user copy

✢Checks in a lot of syscalls

38

Developer experience

✢Simple as checkpatch

✢Picky like %p

✢Lots of compiler warnings

39

Harder Is Subjective

Yes, it is harder

✢Community is buying in

✢Working in the open is huge

✢Amount of help has been awesome

✢We’re all learning the bounds

41

Thank You

