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Yes



Why Don’t We Think The Kernel Is 
“Hard”?



It’s too easy to cause damage
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✢Buffer overflow

✢ Index underflow

✢Stack stomping



People who want to do damage are too clever
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✢Buffer overflow attacks

✢ Invalid parameters

✢Return oriented programming

By Producers Releasing Corporation - The Devil Bat movie, Public Domain, 
https://commons.wikimedia.org/w/index.php?curid=11451565



But that’s not new, is it?



Old as the C compiler
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✢The C language simplifies

✢ Memory organization

✢ Control flow

✢C is not strongly typed



Efficient and convenient

✢struct ip_msfilter {

✢ . . .

✢ __u32 imsf_numsrc;

✢ __be32 imsf_slist[1];

✢};

✢u = ipm->imsf_slists[index];



Clever and precise

✢union tcp_word_header {

✢ struct tcphdr hdr;

✢ __be32 words[5];

✢};

✢twh->words[3] = 0x8675



Why would I want to give that up?



You probably don’t

✢Strongly typed languages have their own issues

✢Object oriented programming adds overhead

✢The code base is really big

“Strong typing is 
for weak minds” 
–
Tom Van Vleck?
James Gosling?



There are things we can do

✢Use the typing that is available

✢Fix what we know to be dangerous

✢Prepare for failures



Typing? How does that help?



refcount_t

✢Allocated object reference counts

✢Should never be 0

✢Detect use of freed object



What do we know is dangerous?



String functions

✢strcpy(dest, src);

✢strncpy(dest, src, strlen(src));

H e r e w e G o !



Automatic arrays

✢int func(struct conp *p, int count)

✢{

✢ struct conp controls[count];



Casts

✢struct cred *cred = (struct cred *cred) &i;

✢temp = (unsigned short)((int)(temp) + shift);



It’s not that they can’t be used safely

✢Checking may be expensive

✢Try to find all the callers



Stacks



Convenient for function parameters

✢Push on call

✢Pop on return

✢Hardware accelerated

Jan Łukasiewicz

https://en.wikipedia.org/wiki/Jan_%C5%81ukasiewicz


Convenient for mucking up
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Harder to get the wrong stack data
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Erase what’s no longer needed
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A random thought



Attackers and developers hate randomization

✢For the same reasons

✢Real addresses are needed

✢Log are less useful

✢Debuggers get buggered



Structures

struct agamemnon {

struct list_head *list;

struct cred *cred;

u64 flags;

u32 banners;

u32 bunting;

};

__randomize_layout

struct agamemnon {

u32 banners;

struct list_head *list;

u32 bunting;

struct cred *cred;

u64 flags;

};

__no_randomize_layout



Stack pages are just pages
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Functions can go in any order
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ssrbq_init

ssrbq_reset

ssrbq_rehash

ssrbq_compute

ssrbq_teardown

ssrbq_init

ssrbq_reset

ssrbq_rehash

ssrbq_compute

ssrbq_teardown



Do I have To Worry About 
Performance?



Does the sun set in the west?
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True story

✢There is no measurable impact, 
can I check in?

✢ I found one case with 2% 
impact, can I check in?

✢ I fixed the performance, can I 
check in?

✢No, you have inadequate 
benchmarks.

✢No, you have demonstrated 
negative impact.

✢No, your benchmarks are not 
good enough.
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Performance trumps security more often than not

✢Performance is quantitative

✢Easy to measure



Vulnerability is quantum

✢Don’t know how it could 
possibly be vulnerable

✢Hypothetically vulnerable

✢Demonstrably vulnerable

✢Exploited

Vulnerable?0
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100

Percentage of Concern

Vulnerable?



Is It Worth The Bother?



Code Churn

✢180+ files with refcount_t

✢500+ instances

✢Lots more to do
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Runtime overhead

✢Hardened user copy

✢Checks in a lot of syscalls
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Developer experience

✢Simple as checkpatch

✢Picky like %p

✢Lots of compiler warnings
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Harder Is Subjective



Yes, it is harder

✢Community is buying in

✢Working in the open is huge

✢Amount of help has been awesome

✢We’re all learning the bounds
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Thank You


