
Copyright©2018 NTT Corp. All Rights Reserved.

Akihiro Suda (@_AkihiroSuda_)

NTT Software Innovation Center

Comparing Next-Generation

Container Image Building Tools

Open Source Summit Japan (June 20-22, 2018)

2
Copyright©2018 NTT Corp. All Rights Reserved.

•Software Engineer at NTT

•GitHub: @AkihiroSuda

•Twitter: @_AkihiroSuda_

•Docker Moby core maintainer

• In April 2017, Docker [as a project] transited into Moby

•Now Docker [as a product] has been developed as one of

downstreams of Moby

: ~ :

RHEL Fedora

Who am I

github.com/AkihiroSuda
https://twitter.com/_AkihiroSuda_

3
Copyright©2018 NTT Corp. All Rights Reserved.

•BuildKit initial maintainer

•Next-generation `docker build`

•containerd maintainer

• Industry-standard container runtime

•Can be used as a Docker-replacement for Kubernetes

•Docker Tokyo Community Leader (meetup organizer)

• https://dockerjp.connpass.com/

Who am I

https://dockerjp.connpass.com/

4
Copyright©2018 NTT Corp. All Rights Reserved.

•Problems of `docker build`

•New image builder tools

•Comparison & Evaluation

•CBI: "Container Builder Interface"

Agenda

BuildKit img

Bazelkaniko

Buildah

Source-to-Image Metaparticle

umoci&orca

5
Copyright©2018 NTT Corp. All Rights Reserved.

•Shell-script-like language for building Docker container

images

•Each of the lines is cached as a Copy-on-Write filesystem

layer, e.g. overlayfs

Introduction to Dockerfile

mount –t overlay \
–o lowerdir=0,upperdir=1 ..

FROM golang:1.10

COPY . /go/src/github.com/foo/bar

RUN go build –o /bar github.com/foo/bar
mount –t overlay \
–o lowerdir=1,upperdir=2 ..

6
Copyright©2018 NTT Corp. All Rights Reserved.

•Supports transferring files between stages, starting with

Docker 17.05

• Effectively reduces the size of the final image

Introduction to Dockerfile

FROM golang:1.10 AS foobar

COPY . /go/src/github.com/foo/bar

RUN go build –o /bar github.com/foo/bar

FROM alpine:3.7

COPY –-from=foobar /bar /

copy "bar" to

the final stage

7
Copyright©2018 NTT Corp. All Rights Reserved.

•Docker-integrated tool for building images using

Dockerfile

•Requires Docker daemon to be running

•Similar to `docker run`, but some features are intentionally

removed for security reason

•No volumes (`docker run -v`, `docker run --mount`)

•No privileged mode (`docker run –-privileged`)

Introduction to `docker build`

8
Copyright©2018 NTT Corp. All Rights Reserved.

•Modifying a single line always invalidates the caches of

the subsequent lines

•N-th line is assumed to always depend on the (N-1)-th line

•A user needs to arrange the instructions carefully for

efficient caching

Problem: inefficient caching

FROM debian

EXPOSE 80

RUN apt update && apt install –y HEAVY-PACKAGES

Modifying this line always invalidates the apt cache

due to the false dependency

9
Copyright©2018 NTT Corp. All Rights Reserved.

•A multi-stage Dockerfile has DAG structure

Problem: no concurrency

FROM golang AS stage0
...
RUN go build –o /foo ...

FROM clang AS stage1
...
RUN clang –o /bar ...

FROM debian AS stage2
COPY --from=stage0 /foo /usr/local/bin/foo

COPY --from=stage1 /bar /usr/local/bin/bar

0

2

1

Directed Acyclic Graph

has concurrency

10
Copyright©2018 NTT Corp. All Rights Reserved.

•A multi-stage Dockerfile has DAG structure

Problem: no concurrency

FROM golang AS stage0
...
RUN go build –o /foo ...

FROM clang AS stage1
...
RUN clang –o /bar ...

FROM debian AS stage2
COPY --from=stage0 /foo /usr/local/bin/foo

COPY --from=stage1 /bar /usr/local/bin/bar

0

2

1

0

1

2

Actual `docker build`

implementation (Sequential)

11
Copyright©2018 NTT Corp. All Rights Reserved.

•No safe way to access private assets (e.g. Git repos, S3)

from build containers

•Copying credentials using `COPY` can leak the credential

accidentally

•Needs to be carefully used with either multi-stage or `--squash`

•Env vars are vulnerable to accidents as well

Problem: inaccessible to private assets

FROM ...

COPY id_rsa ~/.ssh

RUN git clone ssh://...

RUN rm –f ~/.ssh/id_rsa The key still remains in the layer!

12
Copyright©2018 NTT Corp. All Rights Reserved.

•Cannot be executed without root privileges

• Important for building images on Kubernetes

•Cannot preserve compiler caches due to lack of volumes

•Unreproducible builds

•Non-deterministic command executions

• Left-pad issue

•Dockerfile can be too complex and hard to maintain

Other problems

13
Copyright©2018 NTT Corp. All Rights Reserved.

•And more!

• FTL, Smith, Ansible Container...

•Some of them still use Dockerfile, others not

•No "silver bullet" solution

Solutions

BuildKit img

Bazelkaniko

Buildah

Source-to-Image Metaparticle

umoci & orca

14
Copyright©2018 NTT Corp. All Rights Reserved.

•Uses DAG-style low-level intermediate language called LLB

• Accurate dependency analysis and cache invalidation

• Vertices can be executed in parallel

•LLB can be compiled from Dockerfile

• And also from 3rd party languages

BuildKit: next-generation `docker build`

Compile

Dockerfile

LLB DAG

3rd party languages

docker-image://alpine

Image

git://foo/bar

docker-image://gcc

Run("apk add ..")Run("make")

https://github.com/moby/buildkit

3 vertices can be executed in parallel

2

https://github.com/moby/buildkit

15
Copyright©2018 NTT Corp. All Rights Reserved.

•DAG structure of LLB can be described using multi-stage

Dockerfile

BuildKit: next-generation `docker build`

FROM golang AS stage0
...
RUN go build –o /foo ...

FROM clang AS stage1
...
RUN clang –o /bar ...

FROM debian AS stage2
COPY --from=stage0 /foo /usr/local/bin/foo

COPY --from=stage1 /bar /usr/local/bin/bar

0

2

1

16
Copyright©2018 NTT Corp. All Rights Reserved.

BuildKit: next-generation `docker build`

Can be also used for building non-

container artifacts

17
Copyright©2018 NTT Corp. All Rights Reserved.

•Distributed mode is also on plan (#224, #231)

• A worker tells the master its loadavg and LLB DAG vertex cache

info

• The master choose the worker for each of the LLB DAG vertices

using the info from the workers

BuildKit: next-generation `docker build`

Master

Master

Master

LBClient

Worker

Worker

Worker

"I can reproduce cache for vertex sha256:deadbeef!"

https://github.com/moby/buildkit/issues/224
https://github.com/moby/buildkit/issues/224

18
Copyright©2018 NTT Corp. All Rights Reserved.

•Experimental support for rootless mode

•Runs everything including BuildKit itself as an unprivileged user,

using `user_namespaces(7)`

• Protect the system from potential bugs of BuildKit/containerd/runc.

• Also useful for HPC users

• Requires `newuidmap(1)` and `newgidmap(1)` with SUID bit for `apt`

•No patch for runc is needed since June 2018

•Don't confuse this with `dockerd --userns-remap`

• `dockerd –-userns-remap` still requires `dockerd` itself to be

executed as the root

BuildKit: next-generation `docker build`

19
Copyright©2018 NTT Corp. All Rights Reserved.

•Rootless BuildKit can be executed inside Docker and

Kubernetes

• But requires `--privileged` for let `RUN` containers mount `/proc`

• Will be fixed soon via moby/moby#36644 and

kubernetes/kubernetes#64283

• Still safe because BuildKit works as an unprivileged user

BuildKit: next-generation `docker build`

...
USER penguin
ENTRYPOINT ["rootlesskit", "buildkitd"]

RootlessKit: shim for setting up user NS and mount NS
https://github.com/AkihiroSuda/rootlesskit

https://github.com/moby/moby/pull/36644
https://github.com/kubernetes/kubernetes/pull/64283
https://github.com/AkihiroSuda/rootlesskit

20
Copyright©2018 NTT Corp. All Rights Reserved.

•Plan to support "privileged" build as well

• likely to use libentitlement (#238)

• e.g. `buildctl build --entitlements=security.unconfined`

for privileged build

• potential use-cases: GPU, FUSE, ...

BuildKit: next-generation `docker build`

https://github.com/moby/buildkit/issues/238

21
Copyright©2018 NTT Corp. All Rights Reserved.

•Supports non-standard Dockerfile "syntax",

e.g. `RUN –-mount`

• `RUN --mount` will also support SSH agent socket file and

secret files (#262)

BuildKit: next-generation `docker build`

syntax = tonistiigi/dockerfile:runmount20180610
...
RUN --mount=target=/root/.cache,type=cache go build

Cache mount can be useful for compillers (e.g. Go)

and package managers (e.g. apt)

https://github.com/moby/buildkit/issues/262

22
Copyright©2018 NTT Corp. All Rights Reserved.

BuildKit: next-generation `docker build`

•Benchmark result (from Tonis's slide: https://t.co/aUKqQCVmXa)

https://t.co/aUKqQCVmXa

23
Copyright©2018 NTT Corp. All Rights Reserved.

•Will be integrated to Moby & Docker 18.06 (moby/moby#37151)

•No change on the `docker build` command line but you need to

set `DOCKER_BUILDKIT=1`

•Will be released by the end of this month

•Also adopted by OpenFaaS Cloud

• https://github.com/openfaas/openfaas-cloud

• "GitOps for your functions with native GitHub integrations"

BuildKit: next-generation `docker build`

https://github.com/moby/moby/pull/37151
https://github.com/openfaas/openfaas-cloud

24
Copyright©2018 NTT Corp. All Rights Reserved.

•Developed under Moby's open governance

• But Dockerfile-to-LLB compiler is planned to be moved to Docker,

Inc.'s repo (#425)

• Dockerfile specification is maintained by Docker, Inc.

• LLB allows implementing non-Dockerfile languages

• Any idea for new language?

BuildKit: next-generation `docker build`

https://github.com/moby/buildkit/pull/425

25
Copyright©2018 NTT Corp. All Rights Reserved.

•Created by Jessie Frazelle (Microsoft)

•Uses BuildKit as a library but daemonless and has Docker-

like CLI

•Currently no support for running multiple ` img` instances with the

same cache directory (#92)

•Rootless mode by default

img: daemonless BuildKit

$ img build –t example.com/foo .
$ img push example.com/foo
$ img save example.com/foo | docker load

https://github.com/genuinetools/img

https://github.com/genuinetools/img/issues/92
https://github.com/genuinetools/img

26
Copyright©2018 NTT Corp. All Rights Reserved.

•Created by Red Hat

•Officially included in RHEL since RHEL 7.5

•Supports Dockerfile, but `buildah run` and `buildah
commit` are supported as well

• as in `docker run` and `docker commit`, without Dockerfile

•Daemonless

•Can be used as a backend of `podman build`

• Podman: Red Hat's daemonless and swarmless Docker-like tool

Buildah: Red Hat's daemonless `docker build`

https://github.com/projectatomic/buildah

https://github.com/projectatomic/buildah

27
Copyright©2018 NTT Corp. All Rights Reserved.

•Supports secret volume

• But configuration is globally scoped

• `/etc/containers/mounts.conf`

• e.g. `/usr/share/rhel/secrets:/run/secrets` for allowing all Buildah

containers to access RHEL subscriptions

• Seems to have usability and security concern for other use-cases

•Rootless mode is planned (#386)

Buildah: Red Hat's daemonless `docker build`

https://github.com/projectatomic/buildah/issues/386

28
Copyright©2018 NTT Corp. All Rights Reserved.

•Cache for Dockerfile instructions is not supported but

planned (#601)

•Parallelization is also planned (#633)

• And distributed execution as well

Buildah: Red Hat's daemonless `docker build`

https://github.com/projectatomic/buildah/issues/601
https://github.com/projectatomic/buildah/issues/633

29
Copyright©2018 NTT Corp. All Rights Reserved.

•Created by Aleksa Sarai (SUSE)

•Umoci: Umoci modifies Open Container images

•Unpacks and repacks OCI Image Spec archives (tar+gz and

JSON) into/from OCI Runtime Spec bundles (directories)

• "Pure"-Rootless and daemonless

• Does not require setting up subuids/subgids (which require SUID

binary) for unpacking archives that have multiple UIDs/GIDs

• Uses `user.rootlesscontainers` xattr instead of `chown(2)`

Umoci & Orca: the first rootless and daemonless image builder

https://github.com/openSUSE/umoci
https://github.com/cyphar/orca-build

https://github.com/openSUSE/umoci
https://github.com/cyphar/orca-build

30
Copyright©2018 NTT Corp. All Rights Reserved.

•Orca: Umoci-based image builder with support for Dockerfile

•Can be used with runROOTLESS for images that require multiple

UIDs/GIDs (typically Debian/Ubuntu apt)

• https://github.com/rootless-containers/runrootless

• Emulates several system calls using `ptrace(2)` and

`user.rootlesscontainers` xattr values (which are set by Umoci)

• No SUID binary is required (but slow)

•Multi-stage Dockerfile and caching are not supported at the moment

• Planned to be integrated into Umoci

• https://twitter.com/lordcyphar/status/987668301890207744

Umoci & Orca: the first rootless and daemonless image builder

https://github.com/rootless-containers/runrootless
https://twitter.com/lordcyphar/status/987668301890207744

31
Copyright©2018 NTT Corp. All Rights Reserved.

•Created by Google

•Kaniko itself needs to be executed in a container, but does

not require `--privileged`

• Execute `RUN` instructions within Kaniko's rootfs and

namespaces

• i.e. `RUN` instructions are executed without creating containers

• Excludes kaniko itself's binary and configuration files on packing

the rootfs archives

• Seems inappropriate for malicious Dockerfiles due to lack of

isolation (#106)

kaniko: "containerless" rootless builder

https://github.com/GoogleCloudPlatform/kaniko

https://github.com/GoogleCloudPlatform/kaniko/issues/106
https://github.com/GoogleCloudPlatform/kaniko

32
Copyright©2018 NTT Corp. All Rights Reserved.

•Bazel: Google's generic build system

•Not specific to containers

• `rules_docker` can build Docker images, but equivalent of `RUN`

instruction is intentionally omitted due to poor reproducibility

Non-Dockerfile based tools

https://github.com/bazelbuild/rules_docker#container_image
container_image(

name = "app",
base = "@java_base//image",
files = ["//java/com/example/app:Hello_deploy.jar"],
cmd = ["Hello_deploy.jar"]

)

33
Copyright©2018 NTT Corp. All Rights Reserved.

•Source-to-Image: Red Hat OpenShift's build system

• Application developers don't need to write any file for building

images

• S2I base images contain scripts for building applications in the

language-specific way

• e.g. `centos/python-35-centos7` for Python 3.5

• Previous versions depended on Docker, but recent version can

produce Dockerfiles that can be built by other tools

Non-Dockerfile based tools

34
Copyright©2018 NTT Corp. All Rights Reserved.

•Metaparticle: library for cloud-native apps on Kubernetes

• Supports .NET, Go, Java, JS, Python, Ruby, Rust

•Hard to change the target repository without editing source

codes

• Or implementing a new library on top of Metaparticle

• Also provides service-related features

• e.g. sharding HTTP requests based on URL

Non-Dockerfile based tools

from metaparticle import Containerize
@Containerize(package={'repo': 'foo/bar', ...)
def main():

...

35
Copyright©2018 NTT Corp. All Rights Reserved.

•FTL

• Similar to S2I but only for Node.js, Python, and PHP

•Smith

• Supports Oracle's "Microcontainer Manifest"

•Ansible Container

• Supports Ansible Playbook

•README says "no longer under active development"

Non-Dockerfile based tools

36
Copyright©2018 NTT Corp. All Rights Reserved.

Comparison across Dockerfile-based tools

Docker BuildKit img Buildah Orca kaniko

Instruction cache Limited ✔ ✔
Parallelization ✔ ✔ Planned

Distributed

execution
Planned Planned

Daemonless As a

library ✔ ✔ ✔ ✔
Rootless ✔ ✔ Planned ✔ ✔

Requires SUID binary for apt

1 1 2 3

1

37
Copyright©2018 NTT Corp. All Rights Reserved.

Comparison across Dockerfile-based tools

Docker BuildKit img Buildah Orca kaniko

Instruction cache Limited ✔ ✔
Parallelization ✔ ✔ Planned

Distributed

execution
Planned Planned

Daemonless As a

library ✔ ✔ ✔ ✔
Rootless ✔ ✔ Planned ✔ ✔

No SUID required but slow

1 1 2 3

2

38
Copyright©2018 NTT Corp. All Rights Reserved.

Comparison across Dockerfile-based tools

Docker BuildKit img Buildah Orca kaniko

Instruction cache Limited ✔ ✔
Parallelization ✔ ✔ Planned

Distributed

execution
Planned Planned

Daemonless As a

library ✔ ✔ ✔ ✔
Rootless ✔ ✔ Planned ✔ ✔

Executable in containers without `--privileged` but still has security concern

1 1 2 3

3

39
Copyright©2018 NTT Corp. All Rights Reserved.

Benchmark

Average time of Build #1 (5 times)

Average time of Build #2 (5 times)

Always

without cache

Some builders

use cache

Build #1

Build #2

Prune the state

Put a dummy file

Build #1

Build #2

Prune the state

Put a dummy file

...

Simulates

trivial code change

40
Copyright©2018 NTT Corp. All Rights Reserved.

•Benchmark script is available

• https://github.com/AkihiroSuda/buildbench

• Supported tools: Docker, Buildkit, img, Buildah, Kaniko

• Everything is containerized

• Builders (except Kaniko) are configured to use overlayfs

•Tested on Travis CI (June 19, 2018)

• Logs (contains version info and raw data): https://travis-
ci.org/AkihiroSuda/buildbench/builds/393967682

• See also https://github.com/AkihiroSuda/buildbench/issues/5

• 2 bursted vCPUs, 7.5GB RAM

Benchmark

https://github.com/AkihiroSuda/buildbench
https://travis-ci.org/AkihiroSuda/buildbench/builds/393967682
https://github.com/AkihiroSuda/buildbench/issues/5

41
Copyright©2018 NTT Corp. All Rights Reserved.

Benchmark: examples/ex01

FROM alpine AS buildc
RUN apk add --no-cache build-base
RUN echo ... > hello.c
COPY . /foo
RUN gcc -o /a.out /hello.c

FROM alpine AS buildgo
RUN apk add --no-cache build-base
RUN apk add --no-cache go
RUN echo ... > hello.go
RUN go build -o /a.out /hello.go

FROM alpine
COPY --from=buildc /a.out /hello1
COPY --from=buildgo /a.out /hello2

Only the cache for the next line

SHOULD be invalidated

on modification of the build ctx

`apk add build-base`

SHOULD NOT be executed twice

42
Copyright©2018 NTT Corp. All Rights Reserved.

Benchmark result: examples/ex01

15.6s

7.9s

10.0s

15.3s

13.2s

1.2s 1.1s
1.9s

13.5s 13.1s

Docker BuildKit img Buildah Kaniko

#1 #2

43
Copyright©2018 NTT Corp. All Rights Reserved.

•Dockerfile used for the development of Moby

•Good example of complex DAG

• 13 stages can be executed in parallel at maximum

• Buildah and Kaniko don't support this DAG at the moment

• `FROM base` results in attempt to pull `docker.io/library/base`

Another benchmark: moby/moby

golang:1.10.3

base

criu registry docker-py swagger frozen-images runtime-dev tomlv vndr containerd proxy gometalinter dockercli tini

dev

runc

44
Copyright©2018 NTT Corp. All Rights Reserved.

Benchmark result: moby/moby

351.8s

278.8s

447.1s

6.4s 1.9s 7.6s

Docker BuildKit img

#1 #2

45
Copyright©2018 NTT Corp. All Rights Reserved.

•My recommendation is BuildKit, but it is not the "silver

bullet"

•disclosure: I'm a maintainer of BuildKit

•Other tools are attractive as well

• Language-specific builders, e.g. S2I

• SUID-less rootless mode, e.g. Orca and Kaniko

• Enterprise support, e.g. Buildah

•Can we define the common interface for all of them?

So.. which one is the best?

46
Copyright©2018 NTT Corp. All Rights Reserved.

•https://github.com/containerbuilding/cbi

•Defines "BuildJob" as a Kubernetes CRD

•Supports several backends

CBI: Container Builder Interface for Kubernetes

CBI

controller

Docker

BuildKit

img

Buildah

GCB

kubectl

Session

Manager
cbictl

Registry

CBI CRD ("buildjob")
CBI plugin API

OCI Distribution Spec

(Docker Registry API)

Note: not an official CNCF/Kubernetes project

https://github.com/containerbuilding/cbi

47
Copyright©2018 NTT Corp. All Rights Reserved.

CBI: Container Builder Interface for Kubernetes

apiVersion: cbi.containerbuilding.github.io/v1alpha1
kind: BuildJob
metadata:

name: ex0
spec:

registry:
target: example.com/foo/bar
push: true

language:
dockerfile: {}

context:
git:

url: git://github.com/foo/bar
pluginSelector: plugin.name=buildkit

Most plugins accept Dockerfile,

but non-Dockerfile plugins are also supported.

e.g. Source-to-Image

The CBI controller converts "BuildJob" CRD objects

into Kubernetes batch/v1 Job objects

48
Copyright©2018 NTT Corp. All Rights Reserved.

CBI: Container Builder Interface for Kubernetes

apiVersion: cbi.containerbuilding.github.io/v1alpha1
kind: BuildJob
metadata:

name: ex0
spec:

registry:
target: example.com/foo/bar
push: true

language:
dockerfile: {}

context:
git:

url: git://github.com/foo/bar
pluginSelector: plugin.name=buildkit

Also supports ConfigMap, HTTP, S3,

SFTP, and even Dropbox.. (using Rclone)

Registry and Git credentials can be

provided as Kubernetes secret objects

49
Copyright©2018 NTT Corp. All Rights Reserved.

•Supported plugins:

•Docker

• BuildKit

• img

• Buildah

• kaniko

•OpenShift Source-to-Image

•Google Cloud Container Builder

• Managed service for `docker build`

•New plugin can be also added easily as a Kubernetes
service

CBI: Container Builder Interface for Kubernetes

50
Copyright©2018 NTT Corp. All Rights Reserved.

•POC for Skaffold integration is available

(GoogleContainerTools/skaffold#596)

CBI: Container Builder Interface for Kubernetes

apiVersion: skaffold/v1alpha2
kind: Config
build:

artifacts:
- imageName: example.com/foo/bar

deploy:
kubectl:
manifests:

- k8s-pod.yaml
profiles:

- name: cbi
build:

cbi: {}

Deploy a Kubernetes pod using the image

By default the local Docker is used,

but can be easily switched to CBI
(`skaffold dev –p cbi`)

https://github.com/GoogleContainerTools/skaffold/issues/596

51
Copyright©2018 NTT Corp. All Rights Reserved.

•My recommendation is BuildKit (disclosure: I'm a maintainer)

•Will be integrated to Docker 18.06 experimentally

(planned to be released by the end of this month)

•But other tools are promising as well

•Now is the time for standardization

• https://github.com/containerbuilding/cbi

Conclusion

https://github.com/containerbuilding/cbi

