OSS Japan 2018

Common attacks on loT devices
Christina Quast

Agenda

e Whatis loT? And why is security important?
e Hardware attacks

e Software attacks

e Example attack stories

e Take-aways

What is loT?

embedded device connected to the internet

often power constrained, small, connected over some
kind of wireless technology

often memory-constrained

e.g. PLC, SSD-Controller, Temperature-control

Often easy to hack

Can become part of botnet

[by geralt on pixabay/ CCOQ]

Approach

Analysis: Inspect components, datasheets, firmware update process, contents of flash
Code execution: Tamper with firmware update process, rewrite persistent memory content, gain
access over debug channels/JTAG
Communication channel: Get feedback from device over JTAG, serial console, etc
Firmware exploitation:
o Get firmware
o Analyse it
o Mount file system, analyze content (services provided, users configured)
o Emulate firmware (dynamic/runtime analysis)

Software

Where to get the firmware

Dump from device memory
Download from manufacturer FTP
server/search on ftp index sites

Get from CD/DVD

Wireshark traces of firmware updates

Analyse firmware

Understand file format from firmware update
routine

Search for code/string on code.google.com,
sourceforge.net, ..

Decompile, compile, tweak, fuzz

If not stripped and human readable strings, it's
easier to reverse

push rbp

moyv rbp, rsp

add rsp, OFFFFFFFFFFFFFF8Oh
mou [rbpevar_78], rdi
moy [rbpevar_80], rsi
moyv rax, fs:28h

moy [rbpevar_8], rax
xor eax, eax

moyv rax, [rbpevar_88]
mov edx, [rax]

moy rax, [rbpevar_78]
mov [rax], edx

moy rax, [rbpevar_880]
mov eax, [rax]

cnp eax, 1Ch

jnz loc_4031F4

™7
Bk

mov rax, [rbpevar_80]
moy rdx, [rax+8]
mov rax, [rbpevar_78]
mnov [rax+8], rdx
mov rax, [rbpevar_80]
mov eax, [rax+18h]
test eax, eax
jle loc_4B831B6

L
W= _
mov [rbpevar_64], 0
inp short loc_4830F3

rax, [rbpevar_80]
eax, [rax]

eax, 19h

short loc_403216

1

1

mou rax, [rbpevar_80]
mou eax, [rax]

cnp eax, 1Ah

ijnz short loc_403236

o |

mou rax, [rbpevar_80] mov rax, [rbpevar_80]
mou eax, [rax+18h] moyu eax, [raxe+16nh]
cnp eax, [rbpevar_64] test eax, eax

jle loc_4031B6 jle loc_403369

. T Tt

v]

rax, [rbpevar_80]
rax, [rax+8]
rax, [rax+18h]

rax, rax
loc_403369

rax, [rbpevar_80]
rcx, [rax+16h]
eax, [rbpevar_64]
rdx, eax

rax, rdx

rax, 2

rax, rdx

rax, 3

rax, recx

rdx, [rax]
[rbpevar_60], rdx

[rbpevar_64], O |

short loc_4832a6

IDA view

Attacker Tools

e Software:

O

&

Binary reversing:

m IDAPro

m radare2

m binaryninja
Bug finder:

m Flawfinder

m Metasploit Framework
Firmware analysis:

m firmwalker (with binwalk, cpu_rec)

m firmware-analysis-toolkit

m FACT (firmware analysis and comparison tool)
Web testing:

m ZAP, sqlmap, sslyze, Gobuster (see OWASP)
Debugging:

m GDB & OpenOCD

@metasploit

%) OLUASP

Open Web Application
Security Project

Hardware

[Backside layout mainboard Xlaomi Vacuum
Cleaner robot by Dennis Giese and Daniel

Wegemer]

“

Non-invasive attacks

e Search for UART, JTAG, etc
Write protection security fuses not enabled => Patch

bootloader

e Hardware Fuzzing (automatically send random data
and monitor whether device crashes)
e Side channel attacks
o Timing attacks

Computation time depends on value of
secret data

Cache miss and cache hit have huge timing
difference => find access pattern in
dependence of timing difference

“* See Talk “Hardware Hacking - Extracting Information From Chips” by Dmitry Nedospasov (@nedos)

Hardware

Non-invasive attacks

e Side Channel Attacks (2)
o Hardware Glitching
m very high/low voltage
m alter clock period during execution
o Power Analysis
m Power consumption of a chip depends
on the secret data that is computed on
the chip):
e SPA (Simple power analysis)
e DPA (Differential power analysis)
m EM Radiation channel

m Acoustic channel [Visible and infrared light emitted by switching
transistors/ by Dmitry Nedospasov]

m Photonic emission side channel
\6

* See Talk “Hardware Hacking - Extracting Information From Chips” by Dmitry Nedospasov (@nedos)

Hardware
FEESERBEANNN

Semi-invasive attacks

3

Decapping package
Infrared light/photon emission analysis of
backside to find location for attack

e Then use laser to flip bits and break crypto

Fully-invasive attacks

Much effort, but 100% success rate
Modify chip with FIB (Focused lon Beam)
Microprobing

Linear code extraction (LCE)

[Yamaha audio IC decapsulated by Olli Niemitalo/ CC0 1.0]

LS

% See Talk “Hardware Hacking - Extracting Information From Chips” by Dmitry Nedospasov (@nedos)

Attacker Tools i o

e Hardware:

o

Break-away
.\ connections

Oscilloscope
Logic Analyzer (e.g. Salae)
JTAG:
m GoodFET, BusBlaster, BusPirate,
JTAGulator, JTAGenum, Black Magic

Probe .
Side Channel Attacks: Low Noise Ampl'lfiel'x

m ChipWhisperer (power analysis, glitching
attacks)

USB:

m Facedancer

SDR:

m HackRF

Datenkrake (FPGA-base

BusPirate

Real attack stories”

e UART (populated or not): Usually device boots into special console/root console

p G H R @ o . - .
‘DZOGOI 6 @DZESS}S h; x® ; ~ Rsﬂl H&

1523-S e

a \
o Je

i
¥
08}
:

-
-
-
-
~
>~
EN
>
>
S
~

[From Hack The World by Juan Carlos Jiménez]

[From 5-Min Tutorial: Ga|n|ng Root via UART by @konukol/]

LS

“% See Talk “Hack All The Things: 20 Devices in 45 Minutes” by gtvhacker

Real attack stories™ PR

jalr $t9 ; _strcpy
addiu $a1, $s1, (aAdmin - Ox5A0008) # “admin”

e Root with U-Boot: SR LU ol b
.. . . addiu al, $s1, (aAdmin - Bx "admin"
o Access bootloader shell, add init=/bin/sh into la $t9, strcat
; nop
ke.rnel cmdline _ _ Jali GSE0 L SEERaE
o Will execute preconfigured script name move $a@, $s0
‘ y . . . 1w $gp, Ox68+var 50{$sp)
xyz’ => replace script with own script nop
o Short pins on NAND, power on => boot into }.gp $t9, _strlen
corrupted U-Boot environment jalr $t9 : strlen
e Hardcoded/base64 encoded username and i Sl =
password in binary addiu $a@, $sp, 8x6B+var_us
jal md5checksum
e Bruteforce easy password move $a1, $s8
1w $ue, ox60+var_ 4u4{$sp)
lui $aB, BxSE
addiu Sv1, $ae, (dword_5E3EB8 - Bx5E0000)
sw $ud, (byte SE3EG4 - BxSE3E08)({$u1)
1i S$vl, 1
sw $vo, (dword_66D9C8 - 9x610000) ($s2)
1w $ue, ox60+var 48($sp)
1w $gp, Bx68+var 50($sp)
g a2 su $u8, dword SE3EB8
. . [Reverse Engineering the TP-Link HS110 by Lubomir
' [BGA by Smial / GFDL-1.2] Stroetmann, Consultant and Tobias Esser, Consultant/
‘ © Softscheck]

—, See Talk “Hack All The Things: 20 Devices in 45 Minutes” by gtvhacker

Real attack stories”

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help . . .
4976 1 DRBIesEFTL=Eaaat e Write su binary into eMMC fs

W[Apply a display filter ... <Ctrl

o, tme Sore oesnaten P ——— PY Command i nj ection

386 389.302758 Dell 02:19:5e Hangzhou_4d:01:47 ARP 42 Who has 192.168.1.642 Tell 192.168.1.128
387 389.303143 Hangzhou_4d:01:47 Dell 02:19:5e ARP 60 192.168.1.64 is at 44:19:b6:4d:01:47 “ 0 "\, .
388 391.268395 Hangzhou_4d:01:47 Broadcast ARP 60 Who has 192.168.1.128? Tell 192.168.1.64 (@] SyStel | |(IS /oS) Wl” re boot On
389 391.268435 Dell 02:19:5e Hangzhou_4d:01:47 ARP 42192.168.1.128 is at 34:e6:d7:02:19:5e
390 391.268455 Hangzhou_4d:01:47 Broadcast ARP 60 Who has 192.168.1.128? Tell 192.168.1.64 H “ »
. 2 st ot user input “ reboot;")
392 391.268813 192.168.1.64 192.168.1.128 TFTP 84 Read Request, File: digicap.dav, Transfer type: octet, timeout=5, blksize=512
393 391.275663 192.168.1.128 192.168.1.64 TFTP 558 Data Packet, Block: 1 H WE P W'f' d
394 391.276482 192.168.1.64 192.168.1.128 TFTP 60 Acknowledgement, Block: 1 @] Often In Or ITl paSSWOr
395 391.276586 192.168.1.128 192.168.1.64 TFTP 558 Data Packet, Block: 2 . . .
396 391.277613 192.168.1.64 192.168.1.128 TFTP 60 Acknowledgement, Block: 2 . f Id f C f t W b
397 391.277691 192.168.1.128 192.168.1.64 TFTP 558 Data Packet, Block: 3 TFTP F"'mware Ie O On Ig U ra |On e page,
398 301.278416 192.168.1.64 192.168.1.128 TFTP 60 Acknowledgement, Block: 3 D I d f
399 391.278486 192.168.1.128 192.168.1.64 TFTP 558 Data Packet, Block: 4 ownloa rom N t k f Id m
400 391.279230 192.168.1.64 192.168.1.128 TFTP 60 Acknowledgement, Block: 4 e Wor O er na es; .-
401391.279296 192.168.1.128 192.168.1.64 TFTP 558 Data Packet, Block: 5
402 391.280028 192.168.1.64 192.168.1.128 TFTP 60 Acknowledgement, Block: 5 Pc to camera O I n U RL pa ramete rS
403 391.280089 192.168.1.128 192.168.1.64 TFTP 558 Data Packet, Block: 6
404.391.281167 192.168.1.64 192.168.1.128 TETP 6@ Acknowledgement, Block: 6 o .
405391.281229 192.168.1.128 192.168.1.64 TFTP 558 Data Packet, Block: 7 h p//f b / b p =
w7 1q7w1 o4 192 1“1 128 TETD W Rlock- (tt ° OO Or Su Oge.octlon Com

Frame 1: 6@ bytes on wire (480 bits), 6@ bytes captured (480 bits) on interface @ d& d_ b
Ethernet II, Src: Hangzhou 4d:01:47 (44:19:b6:4d:01:47), Dst: Broadcast (ff:ff:ff:ff:ff:ff) man commano=re OOt
v Address Resolution Protocol (request)

el b ey L e App installation /Firmware update over
e e unencrypted HTTP/FTP => can be
Sender MAC address: Hangzhou_4d:01:47 (44:19:b6:4d:01:47)

S el intercepted
e SMB share without restrictions, run su

Target IP address: 192.168.1.128

ff £f ff £f ff ff 44 19 b6 4d @1 47 @3 06 00 01 H 1

0010 08 00 06 04 00 01 44 19 b6 4d 01 47 EIETNIWT blnary Vla a
@0 00 00 00 00 00 O a8 01 80 53 57 4b 43 00 00
@0 00 00 00 00 00 00 00 00 00 00 00

© 7 wireshark_{ }_201. _a07332 | Packets: 56359 * Display

‘ [How to Fix a Bricked Hikvision IP Camera Firmware by Bob Jackson]

—, See Talk “Hack All The Things: 20 Devices in 45 Minutes” by gtvhacker

Real attack stories: Xiaomi Vacuum
Cleaning Robot*

Micro USB Port: was authentication protected X

Serial communication: Didn’t find
Port Scan: No suspicious open ports
Sniff network traffic

Recovery mode: Shorting BGA pins with
aluminium foil

LS

% See Talk “34C3 - Unleash your smart-home devices: Vacuum Cleaning Robot Hacking” by Dennis Giese, Daniel Wegemer from TU Darmstadt

Real attack stories: PLC*

Downgrading to older firmware X
Physical mapping of JTAG not easy to X

find X
e Injecting code into firmware update
e Injecting code via flash reprogramming
o rewrote bootloader after partly ,
desoldering pins asserting write Picture:

. https://www.astiautomation.ro/en/prod
protectlon uct/plc-canopen-training-panel-s7-120
o MitM like setup for quick O-siemens/

prototyping and testing of
bootloader replacement code

)

* See Paper “Off-the-shelf Embedded Devices as Platforms for Security Research” by L.Cojocar, K.Razavi, H.Bos (see References)

Real attack stories: Electronic Safe Lock*

e Resistor in series to battery and lock

e Amplified current => Power analysis Side
channel attack (high current consumption
=> 0 read from EEPROM, low current => 1
read from EEPROM

e Mitigate: Don'’t store secret in EEPROM

Actual
data line

Current

Sargent & Greenleaf 6120-332
[by Plore]

i HWN»‘ I

. W
Mg

A~
* See Talk “DEF CON 24 - Plore - Side channel attacks on high security electronic safe locks” by Plore

Real attack stories: Electronic Safe Lock*

e Timing attack: The correct key will have a
longer delay

e Problem: 5 tries, then locked out for 10
minutes

e Counter of tries stored in EEPROM

e Reset counter by turning off MCU shortly
after write of counter started, where cell is
erased but not written yet

e Mitigate: Constant time for comparison,
hashed secrets

H fooous 2 SRSRE B
Digits correct during
'dfffétgﬁg runs Digtal Filter

Flter Type

SATIILHEIA

\6 [by Plore]

* See Talk “DEF CON 24 - Plore - Side channel attacks on high security electronic safe locks” by Plore

Protection®

o Buffer/Stack Overflow Protection, heap overflow protection
m Use safe equivalent functions (gets()->fgets())
m Verify buffer bounds
m Secure compiler flags (-fPIE, -fstack-protector-all, -WI,-z,noecexstack,
-WI,-z,noexecheap,..)
m See https://wiki.debiaon.org/Hardening#Using_Hardening_Options

o Injection (SQL/command injection, XSS) protection for webservers
m Whitelist commands
m No user data into OS system commands
m Validate input & output

L\
% See Talk “AppSec EU 2017 Don't Get Caught Em-bed” by Aaron Guzman

Protection®

o Firmware Updates with cryptographic signatures, update over TLS
m Force updates for high critical bugs
m Anti-rollback protection
m Infrastructure with pub-priv key for verifying signed packages
m Don't Roll Your Own Crypto!

o Secure sensitive information
m No hardcoded secrets (usernames, passwords, tokens, priv keys,.).
m Store secrets only in protected storage (NOT EEPROM, flash)
m Use Trusted Execution Environment (TEE) or security element (SE), TrustZone (for ARM)

“

“% See Talk “AppSec EU 2017 Don't Get Caught Em-bed” by Aaron Guzman

Protection®

o ldentity Management

LS

Separate accounts for internal/remote web management, internal/remote console access
No sessionlDs/Tokens/Cookies in URL (can be replayed)

Tokens should be randomized, and invalidated on logout

Secure and complex password for accessing UART, EEPROM, ssh

Each device: individual secret (one device’s gets hacked, the others stay safe)

o Hardened toolchains, libraries and frameworks

Remove unused language/shell interpreters (/bin/dash, /bin/bash, /bin/ash, /bin/zsh, ..),
dead (debugging) code (dead code which can be used for attacks), unused libs

Disable ancient legacy protocols (ftp, telnet, ..)

Remove debugging interfaces

Remove (or secure) baekdoers management interfaces for consumer support/debugging
purposes,...usually with root privilege

Check third party code and SDKs

* See Talk “AppSec EU 2017 Don't Get Caught Em-bed” by Aaron Guzman

Protection®

o Keep kernel, frameworks & libraries up to date
m Use package managers opkg, ipkg
m Check against vulnerabilities DBs
m Load tools to check third party code and components (retirejs, libscanner, nsp, lynis, owasp

zap, ..),

o Threat modeling

LS

% See Talk “AppSec EU 2017 Don't Get Caught Em-bed” by Aaron Guzman

Take-aways

e Main attack vectors: web-interface, crypto, outdated/unpatched firmware,
sniffing unencrypted communication and cleartext passwords..

e Don’t have your key or password fixed in your binary, store secrets in
hardware protected place

e Integrate security tests into your Cl/development cycles

e There is always a way to hack a system, just a matter of cost and time

Questions?

Resources

https://www.owasp.org/index.php/OWASP_Embedded_Application_Security
http://www.sharcs-project.eu/m/documents/papers/a01-cojocar.p df (Off-the-shelf Embedded Devices as
Platforms for Security Research)
https://www.handymanhowto.com/how-to-fix-a-bricked-hikvision-ip-camera-firmware/
http://jcjc-dev.com/2016/06/08/reversing-huawei-4-dumping-flash/
http://konukoii.com/blog/2018/02/16/5-min-tutorial-root-via-uart/

Recommended Talks

“34C3 - Unleash your smart-home devices: Vacuum Cleaning Robot Hacking” by Dennis Giese, Daniel Wegemer from TU
Darmstadt

“Hardware Hacking - Extracting Information From Chips* by Dmitry Nedospasov

“Lockpicking in the loT...or why adding BTLE to a device sometimes isn't smart at all“ by Ray

“‘DEF CON 24 - Plore - Side channel attacks on high security electronic safe locks” by Plore

Hack All The Things: 20 Devices in 45 Minutes

“Black Hat 2013 - Exploiting Network Surveillance Cameras Like a Hollywood Hacker” by Craig Heffner

