Building a Test-Driven
Network Infrastructure

Tyler Christiansen

THE
@supertylerc Ll

Introductions

THE
i LINUX
FOUNDATION

Disclaimer

This presentation does not reflect the views
or opinions of my employer or anyone
else. They're mine. They're probably wrong.

* Network Architect

— | make some decisions
« Hardware
 Logical and physical designs

* Aspiring Pythonista
* Lover of Regular Expressions

THE
L LINUX

FOUNDATION

Where am 1?

« Twitter: @supertylerc
* GItHub: @supertylerc
« GitLab: @supertylerc

Network
engineers/administrators/technicians?

Linux
engineers/administrators/technicians?

Software engineers/developers?

What Isn't This?

* How to Install <software>

- How to Configure <protocol>
* How to Design <system>

- Howto...]

What Is This?

* An Exploration of Problems and Potential
Solutions

* An Introduction to CI/CD Practices in
Networking

Misalignment

THE
i LINUX
FOUNDATION

Business vs. Network

* Networks are:
— Frequently Complex
— Generally Slow to Adapt

— Often 100% Production

» "Everybody has a testing environment. Some people
are lucky enough to have a totally separate
environment to run production in."

THE

L LINUX

FOUNDATION

Business vs. Network

* Businesses Need:
— Transport of Services
— Rapid Response and Agility
— Reliability and Stability

Networking Is a Little Behind

 Minimal Virtualization of Networks
— RAM Gluttons: 8-16GB RAM for one VM
— Limited Data Plane: ASICs

* Limited Automation Tooling
— Ansible
— SaltStack

Networking Is a Little Behind

+ Less Familiarity with Software Engineering
— Python is Gaining Ground
— CI/CD are Nearly Foreign

* View of Networks is Skewed

— Protocols: General view of network
professionals

— Services: This is what we really enable

Aligning Networking

THE
i LINUX
FOUNDATION

Networks Transport Services

* View Configuration as Services
— Not per device

— Full configuration to support a service over the
base of the underlying network

Software Engineering Principles are

 The basics of variables and flow control
are necessities

« Modularity is your friend

* Pipelines are the foundation of this entire
talk

Pipelines

THE
i LINUX
FOUNDATION

* Job: a series of instructions
— Sequential

« Stage: a collection of jobs
— Nonsequential

* Pipeline: a collection of stages
— (Usually) Sequential

Pipeline Hierarchy

ﬂ

(-
[q |
=

THE
i LINUX
FOUNDATION

Example Pipeline

Build Test Staging Production
(+) build () test1 (v) auto-deploy-ma.. ®) deploy to produ..
() test2

THE

L LINUX

FOUNDATION

Network Pipelines

- Same as Software Pipelines

— Use a combination of tools to orchestrate the
pipeline
* GitLab
* Vagrant
* Python
« SaltStack

— or Ansible or any other "config management"
system)

THE

L LINUX

FOUNDATION

Example Network Pipeline

Lint Unit Integration Review

@ lint_yaml Q @ unit Q @ josxr Q @ review_junos Q

GitLab CI Configuration Example

integration
review

.job: &job
stage: integration
tags: ['kitchen']
before_script:
- python --version
script: './test/scripts/integration.sh'

variables:
VENDOR: junos

iosxr:
<<: *job
variables:
VENDOR: iosxr

tags: ['docker']

stage: unit

image: supertylerc/salt-masterless-test
script: './test/scripts/unit.sh'

Lint_yaml:
<<: *job
stage: lint
tags: ['docker']
image:
name: boiyaa/yamllint

entrypoint: ['/bin/sh', '-c']
script: './test/scripts/Llint.sh'

THE

LINUX

FOUNDATION

GitLab Cl Configuration

junos_review:
<<: *job
stage: review
environment:
name: review/$SCI_COMMIT_REF_NAME
on_stop: stop_junos_review
only:
- branches
except:
- master
variables:
VENDOR: junos
REVIEW: 'true'

stop_junos_review:

<<: *job

stage: review

environment:
name: review/S$SCI_COMMIT_REF_NAME
action: stop

variables:
GIT_STRATEGY: none

script:
- cd test; vagrant destroy -f salt junos
when: manual THE
L LINUX
FOUNDATION

 Validate Syntax and Models

— Syntax: yamllint, xmllint, jsonlint, etc.
« Don't go further if something breaks the rules!

— Models/schemas: yamale, xsd, kwalify,
jsonschema, etc.
« Stop if incorrect data is entered!

— example: customer VLAN ranges are over 3000,
but someone entered a VLAN id of 1003

THE

L LINUX

FOUNDATION

Unit Tests

* Test Discrete Features

— Use mock or fake data
« Expected configuration output vs. actual
configuration output
— Tests should be fast and have a high
confidence of success
- Don't bring up a virtual router during this stage

* Ensure your tests are relevant to the changes being
made

THE

L LINUX

FOUNDATION

Unit Tests

 Tests written in Python using pytest and
testinfra

— Take advantage of testinfra's salt capabilities

— Since It's a container or Linux VM, fake the
host's OS to get the correct configuration for a
network device

Unit Tests

import json
import re

import pytest

@pytest.mark.parametrize("router", [
'jungs',
'nxos',
'Josxr'
1
def test_lint_ntp_state(host, router
host.salt('grains.set', ['os', router], local=True
assert host.salt('state.show_sls', ['ntp.test_netconfig'], local=True

@pytest.mark.parametrize("router", [
'junos',
'nxos',
'josxr'

]
def test_ntp_state_test(host, router

host.salt('grains.set', ['os', router], local=True
assert host.salt('state.apply', ['ntp.test_netconfig', 'test=true'], local=True THE

L LINUX

FOUNDATION

Unit Tests

@pytest.mark.parametrize("router", |
'junos',
'nxos',
'josxr'

F test_state(host, router
host.salt('grains.set', ['os', router], local=True
host.salt('saltutil.refresh_pillar', local=True
host.salt('state.apply', ['ntp.test_netconfig', "exclude=[{'id': 'file.remove'}]"], local=True

expected = [x.rstrip() for x in host.file('/tmp/mock/%s_unit_ntp.mock' % router).content_string.strip().split('\n'")
actual = [x.rstrip() for x in host.file('/tmp/__salt_ntp_salt.example.com.txt').content_string.strip().split('\n')
assert expected == actual
host.salt

'state.apply’,

['ntp.test_netconfig', "exclude=[{'id': 'file.read'}, {'id':'oc_ntp_netconfig_test'}]"],

local=True

THE

L LINUX

FOUNDATION

Integration Tests

* Apply changes to virtual routers
— Be prepared for longer test times!

— Test as close to your production software
version(s) as possible

— You can have many of these running in parallel
as long as you have the resources

- Validate changes to virtual routers

THE
i LINUX
FOUNDATION

Integration Tests

* Vagrant controls the VMs

* pytest and testinfra provide the testing
framework

* Mocks of configurations and states ensure
live network device VM data matches
expectations
» A bash script ties them together
L JEinux

Integration Tests

re
rt pytest

@pytest.mark.parametrize("router",
pytest.param('junos', marks=pytest.mark.junos),
pytest.param('iosxr', marks=pytest.mark.iosxr)

test_ntp_state(host, router
utput = None

h host.sudo

output = host.check_output('salt %s state.apply' % router
re.search(r'Failed:\s+0\n', output
re.search(r'Succeeded:\s+1\s+\ (changed=1\)\n', output
re.search(r'Comment:\s+Configuration changed!\n', output

_test_ntp_map(router) (output

_test_ntp_map(router
recurr
'junos': _test_junos_ntp,
'josxr': _test_iosxr_ntp
router

junos_ntp (output
re.search(r'\s+peer 172.17.19.2;\n', output

re.search(r'\s+server 172.17.19.1 prefer;\n', output THE

L LINUX

FOUNDATION

Integration Tests

def _test_iosxr_ntp(output):
assert re.search(r'\s+peer 172.17.19.2\n', output
assert re.search(r'\s+server 172.17.19.1 prefer\n', output

@pytest.mark.parametrize("router", [
pytest.param('junos', marks=pytest.mark.junos),
pytest.param('iosxr', marks=pytest.mark.iosxr)

]
def test_ntp_is_applied(host, router):

with host.sudo():
output = host.check_output('salt %s state.apply' % router
assert re.search(r'Succeeded:\s+1\n', output
assert re.search(r'Failed:\s+0\n', output
assert re.search(r'Comment:\s+Already configured.\n', output

def _router_ntp_config_command(router):
return
'junos': 'sh conf system ntp',
'josxr': 'sh run ntp'
router THE

L LINUX

FOUNDATION

Integration Tests

@pytest.mark.parametrize("router", [
pytest.param('junos', marks=pytest.mark.junos),
pytest.param('iosxr', marks=pytest.mark.iosxr)

test_state(host, router
cmd = _router_ntp_config_command(router
output = None
with host.sudo():
output = json.loads(host.check_output('salt --output=json %s net.cli "%s"' % (router, cmd))
output = output[router]['out'][cmd].strip
assert output == host.file('/vagrant/mock/%s_ntp.mock' % router).content_string.strip

THE

L LINUX

FOUNDATION

Integration Tests

@pytest.mark.parametrize("router", [
pytest.param('junos', marks=pytest.mark.junos),
pytest.param('iosxr', marks=pytest.mark.iosxr)

test_state(host, router
cmd = _router_ntp_config_command(router
output = None
with host.sudo():
output = json.loads(host.check_output('salt --output=json %s net.cli "%s"' % (router, cmd))
output = output[router]['out'][cmd].strip
assert output == host.file('/vagrant/mock/%s_ntp.mock' % router).content_string.strip

THE

L LINUX

FOUNDATION

Integration Tests - Vagrant

 vagrant-triggers plugin is useful for network
devices that can't use provision during the
normal Vagrant cyle

* An extra network is used on all VMs to put the

Salt Proxy Minions on the same management
network as the network VMs

- Additional shell scripts set up base network
connectivity from the Salt infrastructure to the
network devices

THE
i LINUX
FOUNDATION

Review Environment

« Bring up the exact same environment as was
used for the Integration Tests

* As a final gate before something Is released,
allow an engineer to log into the virtual
environment and inspect its behavior for any
additional oddities

— ldeally anything not caught by integration tests is
noted during this stage and added to integration

tests

More Complex Topologies

« Vagrant isn't the only way to control VMs

* GNS3 and other simulation/emulation
tools have APIs to bring complex and
resource-intensive topologies to life

Gating

THE
i LINUX
FOUNDATION

Branching Strategy

- Have a branch for development, staging,
and production

* Only allow changes to flow from
development to staging to production

* Do not allow direct changes to the staging
or production branches

Development Branch

* This is really just a feature branch

 Short-lived and concerned only with the
changes being made in a specific pull
request

Staging Branch

* This Is the branch into which the
development branches get merged

» This longer-lived branch is concerned with
combining multiple development features
Into a single point-in-time state

» Tag It before you want to release it to
production

THE
L LINUX
FOUNDATION

Staging Environment

» The staging environment should consist of
a tagged version of the staging branches
of all features (repositories)

» A suite of automated tests should exist
that are designed to validate the staging
environment end-to-end across many
features

Staging Environment

» The staging environment can be physical
or virtual

— If virtual, ensure you're taking advantage of
APls of your systems to speed up provisioning
and decommissioning of the environment

« Always start from scratch!

Production Branch

* Once the staging environment has been
thoroughly tested by automated systems
and human review, merge the branch from
staging to the production branch

* From this point, an automated system
could deploy the changes from the
production branch directly to your network
devices

Production Deploy

e SaltStack has schedules

* Run high states on a schedule to always
deploy the production branch

— Temporarily disable schedules when implementing
workarounds or emergency fixes until they make
their way back into configuration management

» Run post-production deploy automated tests
to validate your production network

Click to edit title

* Click to edit text

— Second level
* Third level
— Fourth level
» Fifth level

Summary

THE
i LINUX
FOUNDATION

Tools

* Python

- SaltStack

« Jinja2

- YAML

« GitLab

* Vagrant
 GNS3
 EVE-NG

* VIRL

* OpenStack

THE
L LINUX

FOUNDATION

» Series of tests
 Start with short, high value tests

* Progress to increasingly complex and
longer tests in new stages

 Fail early, fall fast!

* Spin up review environments!

* Protect production

— Don't allow changes not originating from your
config management
* Automatically revert them to the correct state
according to your config management system
— Don't allow changes directly to the production
branch of your config management system
« Gate them through development and staging first!

THE

L LINUX

FOUNDATION

Questions?

THE
i LINUX
FOUNDATION

NNNNNNNNNNNNNNNNNN

