
Building a Test-Driven 

Network Infrastructure
Tyler Christiansen

@supertylerc



Introductions



Disclaimer

This presentation does not reflect the views 

or opinions of my employer or anyone 

else. They're mine. They're probably wrong.



Who am I?

• Network Architect

– I make some decisions

• Hardware

• Logical and physical designs

• Aspiring Pythonista

• Lover of Regular Expressions



Where am I?

• Twitter: @supertylerc

• GitHub: @supertylerc

• GitLab: @supertylerc



Who are you?

• Network 

engineers/administrators/technicians?

• Linux 

engineers/administrators/technicians?

• Software engineers/developers?



What Isn't This?

• How to Install <software>

• How to Configure <protocol>

• How to Design <system>

• How to […]



What Is This?

• An Exploration of Problems and Potential 

Solutions

• An Introduction to CI/CD Practices in 

Networking



Misalignment



Business vs. Network

• Networks are:

– Frequently Complex

– Generally Slow to Adapt

– Often 100% Production

• "Everybody has a testing environment. Some people 

are lucky enough to have a totally separate 

environment to run production in."



Business vs. Network

• Businesses Need:

– Transport of Services

– Rapid Response and Agility

– Reliability and Stability



Networking is a Little Behind

• Minimal Virtualization of Networks

– RAM Gluttons: 8-16GB RAM for one VM

– Limited Data Plane: ASICs

• Limited Automation Tooling

– Ansible

– SaltStack



Networking is a Little Behind

• Less Familiarity with Software Engineering

– Python is Gaining Ground

– CI/CD are Nearly Foreign

• View of Networks is Skewed

– Protocols: General view of network 

professionals

– Services: This is what we really enable



Aligning Networking



Networks Transport Services

• View Configuration as Services

– Not per device

– Full configuration to support a service over the 

base of the underlying network



Software Engineering Principles are 

Critical

• The basics of variables and flow control 

are necessities

• Modularity is your friend

• Pipelines are the foundation of this entire 

talk



Pipelines



Definitions

• Job: a series of instructions

– Sequential

• Stage: a collection of jobs

– Nonsequential

• Pipeline: a collection of stages

– (Usually) Sequential



Pipeline Hierarchy



Example Pipeline

Source: https://docs.gitlab.com/ee/ci/pipelines.html



Network Pipelines

• Same as Software Pipelines
– Use a combination of tools to orchestrate the 

pipeline
• GitLab

• Vagrant

• Python

• SaltStack

– or Ansible or any other "config management" 
system)



Example Network Pipeline



GitLab CI Configuration Example



GitLab CI Configuration Example



Linting

• Validate Syntax and Models

– Syntax: yamllint, xmllint, jsonlint, etc.

• Don't go further if something breaks the rules!

– Models/schemas: yamale, xsd, kwalify, 

jsonschema, etc.

• Stop if incorrect data is entered!

– example: customer VLAN ranges are over 3000, 

but someone entered a VLAN id of 1003



Unit Tests

• Test Discrete Features
– Use mock or fake data

• Expected configuration output vs. actual 
configuration output

– Tests should be fast and have a high 
confidence of success

• Don't bring up a virtual router during this stage

• Ensure your tests are relevant to the changes being 
made



Unit Tests

• Tests written in Python using pytest and 

testinfra

– Take advantage of testinfra's salt capabilities

– Since it's a container or Linux VM, fake the 

host's OS to get the correct configuration for a 

network device



Unit Tests



Unit Tests



Integration Tests

• Apply changes to virtual routers

– Be prepared for longer test times!

– Test as close to your production software 

version(s) as possible

– You can have many of these running in parallel 

as long as you have the resources

• Validate changes to virtual routers



Integration Tests

• Vagrant controls the VMs

• pytest and testinfra provide the testing 

framework

• Mocks of configurations and states ensure 

live network device VM data matches 

expectations

• A bash script ties them together



Integration Tests



Integration Tests



Integration Tests



Integration Tests



Integration Tests - Vagrant

• vagrant-triggers plugin is useful for network 
devices that can't use provision during the 
normal Vagrant cyle

• An extra network is used on all VMs to put the 
Salt Proxy Minions on the same management 
network as the network VMs

• Additional shell scripts set up base network 
connectivity from the Salt infrastructure to the 
network devices



Review Environment

• Bring up the exact same environment as was 
used for the Integration Tests

• As a final gate before something is released, 
allow an engineer to log into the virtual 
environment and inspect its behavior for any 
additional oddities
– Ideally anything not caught by integration tests is 

noted during this stage and added to integration 
tests



More Complex Topologies

• Vagrant isn't the only way to control VMs

• GNS3 and other simulation/emulation 

tools have APIs to bring complex and 

resource-intensive topologies to life



Gating



Branching Strategy

• Have a branch for development, staging, 

and production

• Only allow changes to flow from 

development to staging to production

• Do not allow direct changes to the staging 

or production branches



Development Branch

• This is really just a feature branch

• Short-lived and concerned only with the 

changes being made in a specific pull 

request



Staging Branch

• This is the branch into which the 

development branches get merged

• This longer-lived branch is concerned with 

combining multiple development features 

into a single point-in-time state

• Tag it before you want to release it to 

production



Staging Environment

• The staging environment should consist of 

a tagged version of the staging branches 

of all features (repositories)

• A suite of automated tests should exist 

that are designed to validate the staging 

environment end-to-end across many 

features



Staging Environment

• The staging environment can be physical 

or virtual

– If virtual, ensure you're taking advantage of 

APIs of your systems to speed up provisioning 

and decommissioning of the environment

• Always start from scratch!



Production Branch

• Once the staging environment has been 
thoroughly tested by automated systems 
and human review, merge the branch from 
staging to the production branch

• From this point, an automated system 
could deploy the changes from the 
production branch directly to your network 
devices



Production Deploy

• SaltStack has schedules

• Run high states on a schedule to always 

deploy the production branch

– Temporarily disable schedules when implementing 
workarounds or emergency fixes until they make 

their way back into configuration management

• Run post-production deploy automated tests 

to validate your production network



Click to edit title

• Click to edit text

– Second level

• Third level

– Fourth level

» Fifth level



Summary



Tools

• Python

• SaltStack

• Jinja2
• YAML

• GitLab

• Vagrant
• GNS3

• EVE-NG

• VIRL
• OpenStack



Pipelines

• Series of tests

• Start with short, high value tests

• Progress to increasingly complex and 

longer tests in new stages

• Fail early, fail fast!

• Spin up review environments!



Branching

• Protect production

– Don't allow changes not originating from your 

config management

• Automatically revert them to the correct state 

according to your config management system

– Don't allow changes directly to the production 

branch of your config management system

• Gate them through development and staging first!



Questions?




