
Building Scalable and

Extendable Data Pipeline

for Call of Duty Games:

Lessons Learned

Yaroslav Tkachenko
Senior Data Engineer at Activision

1+

PB

Data lake size

(AWS S3)

Number of topics in the
biggest cluster

(Apache Kafka) 500+

10k - 100k+
Messages per second

(Apache Kafka)

Scaling the data pipeline even further

Volume

Industry best practices

Games

Using previous experience

Use-cases

Completely unpredictable

Complexity

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Kafka topic

Consumer
or

 Producer

 Partition 1

 Partition 2

 Partition 3

Kafka topics are partitioned and replicated

Scaling the pipeline

in terms of Volume

Producers Consumers

Scaling producers

• Asynchronous / non-blocking writes (default)

• Compression and batching

• Sampling

• Throttling

• Acks? 0, 1, -1

• Standard Kafka producer tuning: batch.size, linger.ms, buffer.memory, etc.

Proxy

Each approach has pros and cons

• Simple

• Low-latency connection

• Number of TCP connections per
broker starts to look scary

• Really hard to do maintenance on
Kafka clusters

• Flexible

• Possible to do basic enrichment

• Easier to manage Kafka clusters

Simple rule for

high-performant

producers? Just write

to Kafka, nothing

else1.
1. Not even auth?

Scaling Kafka clusters

• Just add more nodes!

• Disk IO is extremely important

• Tuning io.threads and network.threads

• Retention

• For more: “Optimizing Your Apache Kafka Deployment” whitepaper

from Confluent

https://www.confluent.io/white-paper/optimizing-your-apache-kafka-deployment/

It’s not always about

tuning. Sometimes we need

more than one cluster.

Different workloads require

different topologies.

● Ingestion (HTTP Proxy)
● Long retention
● High SLA

● Lots of consumers
● Medium retention
● ACL

● Stream processing
● Short retention
● More partitions

Scaling consumers is

usually pretty trivial -

just increase the number of

partitions.

Unless… you can’t. What

then?

Metadata Message Queue

Archiver

Block
Storage

Work Queue

Populator
M

et
ad

at
a

M
ic

ro
ba

tc
h

Even if you can add more

partitions

• Still can have bottlenecks within a partition (large messages)

• In case of reprocessing, it’s really hard to quickly add A LOT of new

partitions AND remove them after

• Also, number of partitions is not infinite

You can’t be sure about

any improvements without

load testing.

Not only for a cluster,

but producers and

consumers too.

Scaling and extending

the pipeline in terms of

Games and Use-cases

We need to keep the number

of topics and partitions low

• More topics means more operational burden

• Number of partitions in a fixed cluster is not infinite

• Autoscaling Kafka is impossible, scaling is hard

https://www.confluent.io/blog/how-to-choose-the-number-of-topicspartitions-in-a-kafka-cluster/

Topic naming convention

$env.$source.$title.$category-$version

prod.glutton.1234.telemetry_match_event-v1

Unique game id
“CoD WW2 on PSN”Producer

A proper solution has

been invented decades

ago.

Think about databases.

Messaging system IS a

form of a database

Data topic = Database + Table.

Data topic = Namespace + Data type.

telemetry.matches

user.logins

marketplace.purchases

prod.glutton.1234.telemetry_match_event-v1

dev.user_login_records.4321.all-v1

prod.marketplace.5678.purchase_event-v1

Compare this

Each approach has pros and cons

• Topics that use metadata for their
names are obviously easier to track
and monitor (and even consume).

• As a consumer, I can consume
exactly what I want, instead of
consuming a single large topic and
extracting required values.

• These dynamic fields can and will
change. Producers (sources) and
consumers will change.

• Very efficient utilization of topics
and partitions.

• Finally, it’s impossible to enforce
any constraints with a topic name.
And you can always end up with dev
data in prod topic and vice versa.

After removing

necessary metadata

from the topic names

stream processing

becomes mandatory.

Stream processing becomes mandatory

Measuring → Validating → Enriching → Filtering & routing

Having a single

message schema for a

topic is more than

just a nice-to-have.

Number of supported

message formats 8

Stream processor

JSON Protobuf

Custom Avro

? ?

? ?

// Application.java
props.put("value.deserializer", "com.example.CustomDeserializer");

// CustomDeserializer.java
public class CustomDeserializer implements Deserializer<???> {
 @Override
 public ??? deserialize(String topic, byte[] data) {
 ???
 }
}

Custom deserialization

Message envelope anatomy

ID, env, timestamp, source, game, ...

Event

Header / Metadata

Body / Payload

Message

Unified message envelope

syntax = "proto2";

message MessageEnvelope {
 optional bytes message_id = 1;
 optional uint64 created_at = 2;
 optional uint64 ingested_at = 3;
 optional string source = 4;
 optional uint64 title_id = 5;
 optional string env = 6;
 optional UserInfo resource_owner = 7;
 optional SchemaInfo schema_info = 8;
 optional string message_name = 9;
 optional bytes message = 100;
}

Schema Registry

• API to manage message schemas
• Single source of truth for all producers and consumers
• It should be impossible to send a message to the pipeline without

registering its schema in the Schema Registry!
• Good Schema Registry supports immutability, versioning and basic

validation
• Activision uses custom Schema Registry implemented with Python and

Cassandra

Summary

• Kafka tuning and best practices matter
• Invest in good SDKs for producing and consuming data
• Unified message envelope and topic names make adding a new game

almost effortless
• “Operational” stream processing makes it possible. Make sure you can

support adhoc filtering and routing of data
• Topic names should express data types, not producer or consumer

metadata
• Schema Registry is a must-have

Thanks!

@sap1ens

