
Azure Sphere:
Fitting Linux Security in 4 MiB of RAM
Ryan Fairfax
Principal Software Engineering Lead
Microsoft

© Microsoft Corporation

Agenda

o Intro to Azure Sphere

o Kernel Customizations

o User mode services / App Model

o Future work / Takeaways

9 BILLION new MCU devices
built and deployed every year

Microcontrollers (MCUs)

Azure Sphere
Certified MCUs

The Azure Sphere
OS

The Azure Sphere
Security Service

Azure Sphere is an end-to-end solution for MCU powered devices

© Microsoft Corporation

Multiplexed I/O

SPII2CUARTI2STDMPWMGPIO ADC

ARM
Cortex-M

for real time
processing

S E C U R E D with built-in Microsoft silicon security
technology including the Pluton Security Subsystem

Azure Sphere certified MCUs

C R O S S O V E R Cortex-A processing power
brought to MCUs for the first time

CO N N E C T E D with built-in networking

C O N N E C T E D with built-in networking

S E C U R E D with built-in Microsoft silicon
security technology including the Pluton Security
Subsystem

C R O S S O V E R Cortex-A processing power
brought to MCUs for the first time

Network
Connection
WiFi in first chips

FLASH
≥ 4MB

SRAM
≥ 4MB

ARM
Cortex-A
optimized for

low power

Firewall

Microsoft
Pluton
Security

Subsystem

Firewall

Firewall

Firewall

Firewall

Firewall

© Microsoft Corporation

Secure Application Containers
Compartmentalize code for agility, robustness & security

On-chip Cloud Services
Provide update, authentication, and connectivity

Custom Linux kernel
Empowers agile silicon evolution and reuse of code

Security Monitor
Guards integrity and access to critical resources

The Azure Sphere OS

App Containers for
POSIX (on Cortex-A)

App Containers for
I/O (on Cortex-Ms)

OS
Layer 4

On-chip Cloud ServicesOS
Layer 3

HLOS KernelOS
Layer 2

Security MonitorOS
Layer 1

Azure Sphere MCUsHardware

Azure Sphere OS Architecture

© Microsoft Corporation

At the heart of the Azure Sphere OS is the Linux Kernel

• Based on kernel.org sources

• Originally 4.1, now 4.9, with the goal to keep moving
forward as LTS branches get declared

• Upstream releases are merged monthly

• We have 227 commits in a branch on top of the upstream
sources as of Aug 16th

Linux Kernel Customizations

App Containers for
POSIX (on Cortex-A)

App Containers for
I/O (on Cortex-Ms)

OS
Layer 4

On-chip Cloud ServicesOS
Layer 3

HLOS KernelOS
Layer 2

Security MonitorOS
Layer 1

Azure Sphere MCUsHardware

Azure Sphere OS Architecture

© Microsoft Corporation

The first challenge was making it fit

• The first build was a 4MB kernel, which took up all of
the RAM

• We moved to Execute-In-Place (XIP) which helped a
lot but we still used nearly 4MB of RAM to boot

• Lots of our early patches were making things more
modular and tuning sizes of caches

• Some things were removed to reduce size (sysfs,
most memory tracking options, kallsyms).

• As of our public preview we’re at ~2.4MB of code +
data, ~2100KB RAM usage after boot

Linux Kernel Customizations

© Microsoft Corporation

The first version of our security model used static
permissions baked into the filesystem

• We set owner, group, SUID, SGID on each process to
ensure a consistent identity at runtime via build policy

• To pull this off we added some kernel code to enforce
effective UID = real UID to avoid getting back to root

• Shared data or IPC was done via supplemental groups
(also baked into filesystem)

• This made effective access for a program easier to
reason about, but you had a major burden at build time
to ensure the right owners / groups were set

Linux Kernel Customizations

© Microsoft Corporation

The second version involved a simple Linux Security Module

• The goals were to reduce attack surface and enable new access control scenarios

• The LSM statically fails many operations that aren’t needed on the platform

• We add three new fields to each task: App ID (CID), Network ID (TID), Capabilities

• Other apps + kernel modules can use these new fields for extended access control

• All values are immutable once set and inherit to child processes

Linux Kernel Customizations

© Microsoft Corporation

We experimented a lot with filesystems

• We started with CRAMFS + XIP patches, but moved to a fork with modifications to reduce overhead

• We patched in CoW support for XIP code when debugging is enabled

• We tried many writable file systems that didn’t work out due to RAM or flash wear overhead: ext2, jffs2, yaffs

• Ultimately we ported ARM’s LittleFS to the kernel as it was a better fit for writable partitions that are hundreds of
KiB in size

• https://github.com/ARMmbed/littlefs

In some cases we added more access control to existing features

• Added per-pin GPIO access to the base GPIO infrastructure as an optional feature

• Added file system quota support for MTD devices

• Adjusted some items to leverage existing or new capabilities instead of checking for root

Linux Kernel Customizations

© Microsoft Corporation

Our user mode code execution model
focuses around applications

• Everything is an app, other than the
application manager (aka init). This
includes system services.

• Apps are self describing, independently
updatable, and generally run isolated
from each other

• There are 4 out of box system apps + an
optional debugger

Apps are renewable

• Everything on the system can be
updated over the air

• Microsoft manages OS app updates,
OEMs manage their app updates

User mode / App model

© Microsoft Corporation

We looked at options for self contained app packages and
containers

• Looked seriously at LXC but couldn’t get it to fit

• We started rolling our own containers with namespaces but
found many of the peripherals apps used didn’t interact with
namespaces properly or led to capability leakage

We ended up with apps as self describing file systems

• Each app is its own filesystem that is mounted / unmounted to
install / uninstall

• Apps contain metadata documents in the root of the FS that
describes how they work and what they need access to

• The system validates policy and enforces it by leveraging many
other Linux technologies

User mode / App model

© Microsoft Corporation

Manifests describe the app

• What to run

• What policy to enforce

• What peripherals to allow access to

Our custom init process (application-
manager) enforces the policy

• Uses cgroups for resource limiting

• Assigns each app a unique UID / GID

• Updates access on /dev entries

• Programs netfilter firewall

Every process other than init is an app

User mode / App model

© Microsoft Corporation

Attack surface is reduced by removing features

• This not only helps our RAM limits but means one less feature we have to reason about from a security
perspective

• We have no shell or user account management

• No kernel module support

• We ship a greatly reduced library set (9 total .so files in /usr/lib)

Resource usage is limited

• cgroups enables predictable RAM exhaustion and resource contention behavior

• An app cannot access any peripherals or network traffic without opting into those features

User mode / App model

© Microsoft Corporation

Upstream some of our work that is applicable outside our product

• Some memory improvements and configuration support are wins for any platform

• File system work maybe generally applicable to other classes of embedded devices

More namespace usage and further isolation of resources

• There’s a lot of security goodness to be had here if we can make it fit

Split up some large capability sets like CAP_SYS_ADMIN

• The Linux capability model is great until you need CAP_SYS_ADMIN…

• Some “low level” hardware features are designed to require ADMIN when not strictly needed

Revisit features that were “too big” to fit by refactoring to enable usage with less resources

• For example, looking at other LSMs

Many, many, more ideas than I can possibly fit on this slide…

Future Work

© Microsoft Corporation

Security and resources are at odds at times

• Features are designed for strong security, space considerations are secondary (if at all)

• Security features are often all or nothing – no way to take some benefit without paying for all

• Many security features depend on other frameworks like sysfs

There’s a lot that works well

• Most core Linux features just work even with limited resources

• Most of the changes we had to do were small modifications to existing code paths

Improvements for the desktop / server space often benefit embedded & IoT as well

• The problems in the IoT space are far from unique

Takeaways

© Microsoft Corporation

Let’s secure the future.

