
Automating stateful 
applications with
Kubernetes Operators
Josh Wood and Ryan Jarvinen, Red Hat

@joshixisjosh9 :: @ryanj



Formerly: DocOps, CoreOS

Josh Wood
Red Hat
Developer Advocate, Kubernetes and OpenShift

● joshix@redhat.com
● @joshixisjosh9
● github.com/joshix
● speakerdeck.com/joshix



Formerly: CoreOS, LindenLab

Ryan Jarvinen
Red Hat
Developer Advocate, Kubernetes and OpenShift

● ryanj@redhat.com
● @ryanj
● github.com/ryanj
● bit.ly/k8s-workshops

learn.openshift.com



Why you care about Operators

Every application on any platform must be installed, 
configured, managed, and upgraded over time.
Patching is critical to security.

“Anything not automated is slowing you down.”

Operators are automated software managers for 
Kubernetes clusters: Install and Lifecycle.



Why you care about Operators

• You can use them right now to make deploying 
software and keeping it running easier: A killer 
new db, but you don’t want know all about its 
config file, the UI for backups, how to connect 
monitoring… how to shard/cluster/distribute it

• You can build them today with the Operator 
Framework SDK. It and our Operators are Open 
Source.



Overview

Scaling stateless apps: Easy



ReplicaSet

$ kubectl scale deploy/staticweb --replicas=3



ReplicaSet



ReplicaSet



Overview

What about apps that… store data?
Or have their own notion of a “cluster”?

Databases?



Creating a database is easy

$ kubectl run db --image=quay.io/my/db



Running it is harder

● Resize/Upgrade - coordination for availability

● Reconfigure - tedious generation / templating

● Backup - requires coordination among instances

● Healing - restore backups, rejoin db cluster



If only k8s knew… 

Extend Kubernetes



The goal

$ cat database-cluster.yaml

spec:

 clusterSize: 3

 readReplicas: 2

 version: v4.0.1

[...]



What are Operators?

● Application-specific controllers that extend the Kubernetes API to 
create, configure, and manage instances of complex stateful 
applications on behalf of a Kubernetes user

● Extend the Kubernetes API through the Custom Resources (CRD) 
mechanism

Reconciling desired state for your application



Simple example: etcd Operator

$ cat deployment.yaml

spec:

 clusterSize: 3

 version: v3.3.9

[...]



etcd Operator

3.3.8

3.3.9

3.3.9



DEMO TIME

https://github.com/coreos/etcd-operator

 

https://github.com/coreos/etcd-operator




Available today

https://github.com/operator-framework/awesome-operators

• Elastisearch
• etcd
• Prometheus
• MySQL
• Postgres (crunchy)
• “and many more!”

 

https://github.com/operator-framework/awesome-operators


● Databases

● File, block, and object storage

● ...apps with their own notion of “cluster”

● Apps for distribution on Kubernetes



Build your Operator

https://github.com/operator-framework/operator-sdk

An Operator is a custom Kubernetes controller for your app. The SDK 
makes it easier to build Operators:
● High level APIs and abstractions to write operational logic
● Scaffolding and code generation to bootstrap new projects
● Extensions to cover common Operator use cases

Build an Operator to make your app Kubernetes native

https://github.com/operator-framework/operator-sdk


Build your Operator

https://github.com/operator-framework/operator-sdk

1. Create a new operator project using the SDK Command Line Interface(CLI)
2. Define new resource APIs by adding Custom Resource Definitions(CRD)
3. Specify resources to watch using the SDK API
4. Define the operator reconciling logic in a designated handler and use the SDK API 

to interact with resources
5. Use the SDK CLI to build and generate the operator deployment manifests

https://github.com/operator-framework/operator-sdk


Build your Operator

Operator SDK walkthrough:

Build your own memcached Operator:
https://github.com/operator-framework/getting-started/

https://github.com/operator-framework/getting-started/


Resources

● https://coreos.com/operators
● Operator Framework and SDK on Github

https://github.com/operator-framework/
● Awesome Operators!

https://github.com/operator-framework/awesome-operators
● Introducing the Operator Framework

https://coreos.com/blog/introducing-operator-framework
● Make a Kubernetes Operator in 15 mins with Helm

https://blog.openshift.com/make-a-kubernetes-operator-in-15-minutes-with-helm/
● Kubernetes Custom Resources Grow up in v1.10.0

https://blog.openshift.com/kubernetes-custom-resources-grow-up-in-v1-10/

https://coreos.com/operators
https://github.com/operator-framework/
https://github.com/operator-framework/awesome-operators
https://coreos.com/blog/introducing-operator-framework
https://blog.openshift.com/make-a-kubernetes-operator-in-15-minutes-with-helm/
https://blog.openshift.com/kubernetes-custom-resources-grow-up-in-v1-10/


Coming Soon: Operators tutorials

OpenShift Learning Portal
http:// learn.openshift.com/

https://learn.openshift.com/


Thank You!

Thanks for attending

Automating with Operators
Josh Wood and Ryan Jarvinen




