
Apache Beam: portable and evolutive
data-intensive applications

Ismaël Mejía - @iemejia

Talend

Who am I?

2

@iemejia
Software Engineer
Apache Beam PMC / Committer

ASF member

Integration Software
Big Data / Real-Time
Open Source / Enterprise

We are hiring !

New products

3

4

Introduction: Big data state of affairs

The web pushed data analysis / infrastructure boundaries

● Huge data analysis needs (Google, Yahoo, etc)

● Scaling DBs for the web (most companies)

DBs (and in particular RDBMS) had too many constraints and it was hard to operate at scale.

Solution: We need to go back to basics but in a distributed fashion

Before Big Data (early 2000s)

5

● Use distributed file systems (HDFS) to scale data storage horizontally

● Use Map Reduce to execute tasks in parallel (performance)

● Ignore strict model (let representation loose to ease scaling e.g. KV stores).

Great for huge dataset analysis / transformation

 but…

● Too low-level for many tasks (early frameworks)

● Not suited for latency dependant analysis

MapReduce, Distributed Filesystems and Hadoop

6

(Produce)

(Prepare)

Map

(Shuffle)

Reduce

The distributed database Cambrian explosion

7
… and MANY others, all of them with different properties, utilities and APIs

(yes it is an over-simplification but you get it)

Distributed databases API cycle

8

NoSQL, because

SQL is too limited

NewSQL let's reinvent

our own thing

SQL is back,

because it is awesome

or worse (because of heterogeneity) …

● Data analysis / processing from systems with different semantics

● Data integration from heterogeneous sources

● Data infrastructure operational issues

Good old Extract-Transform-Load (ETL) is still an important need

The fundamental problems are still the same

9

"Data preparation accounts for about 80% of the work of data scientists" [1]

[2]

1 Cleaning Big Data: Most Time-Consuming, Least Enjoyable Data Science Task

2 Sculley et al.: Hidden Technical Debt in Machine Learning Systems

The fundamental problems are still the same

10

● Latency needs: Pseudo real-time needs, distributed logs.

● Multiple platforms: On-premise, cloud, cloud-native (also multi-cloud).

● Multiple languages and ecosystems: To integrate with ML tools

Software issues: New APIs, new clusters, different semantics,

… and of course MORE data stores !

and evolution continues ...

11

12

Apache Beam

Apache Beam origin

MapReduce

BigTable DremelColossus

FlumeMegastoreSpanner

PubSub

Millwheel
Apache
Beam

Google Cloud
Dataflow

Apache Beam is a unified
programming model
designed to provide
efficient and portable data
processing pipelines

What is Apache Beam?

15

Beam Model: Generations Beyond MapReduce

Improved abstractions let you focus on your
application logic

Batch and stream processing are both
first-class citizens -- no need to choose.

Clearly separates event time from processing
time.

Streaming - late data

9:008:00 14:0013:0012:0011:0010:00

8:00

8:008:00

17

Processing Time vs. Event Time

18

Beam Model: Asking the Right Questions

What results are calculated?

Where in event time are results calculated?

When in processing time are results materialized?

How do refinements of results relate?

Beam Pipelines

PTransform

PCollection

19

The Beam Model: What is Being Computed?

PCollection<KV<String, Integer>> scores = input

 .apply(Sum.integersPerKey());

scores = (input

| Sum.integersPerKey())

The Beam Model: What is Being Computed?

Event Time: Timestamp when the event happened

Processing Time: Absolute program time (wall clock)

The Beam Model: Where in Event Time?

PCollection<KV<String, Integer>> scores = input

 .apply(Window.into(FixedWindows.of(Duration.standardMinutes(2)))

 .apply(Sum.integersPerKey());

scores = (input

 | beam.WindowInto(FixedWindows(2 * 60))

 | Sum.integersPerKey())

The Beam Model: Where in Event Time?

Event Time

Processing
Time 12:0212:00 12:1012:0812:0612:04

12:0212:00 12:1012:0812:0612:04

Input

Output

● Split infinite data into finite chunks

The Beam Model: Where in Event Time?

The Beam Model: When in Processing Time?

PCollection<KV<String, Integer>> scores = input

 .apply(Window.into(FixedWindows.of(Duration.standardMinutes(2))

 .triggering(AtWatermark()))

 .apply(Sum.integersPerKey());

scores = (input

 | beam.WindowInto(FixedWindows(2 * 60)

 .triggering(AtWatermark())

 | Sum.integersPerKey())

The Beam Model: When in Processing Time?

The Beam Model: How Do Refinements Relate?
PCollection<KV<String, Integer>> scores = input

 .apply(Window.into(FixedWindows.of(Duration.standardMinutes(2))

 .triggering(AtWatermark()

 .withEarlyFirings(AtPeriod(Duration.standardMinutes(1)))

 .withLateFirings(AtCount(1)))

 .accumulatingFiredPanes())

 .apply(Sum.integersPerKey());

scores = (input

 | beam.WindowInto(FixedWindows(2 * 60)

 .triggering(AtWatermark()

 .withEarlyFirings(AtPeriod(1 * 60))

 .withLateFirings(AtCount(1))

 .accumulatingFiredPanes())

 | Sum.integersPerKey())

The Beam Model: How Do Refinements Relate?

29

Customizing What Where When How

3
Streaming

4
Streaming

 + Accumulation

1
Classic
Batch

2
Windowed

Batch

GroupByKey
CoGroupByKey

Combine -> Reduce
Sum
Count
Min / Max
Mean
...

ParDo -> DoFn
MapElements
FlatMapElements
Filter

WithKeys
Keys
Values

Windowing/Triggers

Windows
FixedWindows
GlobalWindows
SlidingWindows
Sessions

Triggers
AfterWatermark
AfterProcessingTime
Repeatedly

...

Element-wise Grouping

Apache Beam - Programming Model

30

31

The Apache Beam Vision

1. End users: who want to write pipelines
in a language that’s familiar
.

2. Library / IO connectors: Who want to
create generic transforms.

3. SDK writers: who want to make Beam
concepts available in new languages.

4. Runner writers: who have a
distributed processing environment
and want to support Beam pipelines Beam Model: Fn Runners

Apache
Flink

Apache
Spark

Beam Model: Pipeline Construction

Other
LanguagesBeam Java

Beam
Python

Execution Execution

Cloud
Dataflow

Execution

Runners

Google Cloud
Dataflow

Apache FlinkApache SparkApache Apex

Ali Baba
JStorm

Apache Beam
Direct Runner

Apache Storm

WIP

Apache Gearpump

Runners “translate” the code into the target runtime

* Same code, different runners & runtimes

Hadoop
MapReduce

IBM Streams Apache Samza

Beam IO (Data store connectors)

Filesystems: Google Cloud Storage, Hadoop FileSystem, AWS S3, Azure Storage (in progress)
File support: Text, Avro, Parquet, Tensorflow
Cloud databases: Google BigQuery, BigTable, DataStore, Spanner, AWS Redshift (in progress)
Messaging: Google Pubsub, Kafka, JMS, AMQP, MQTT, AWS Kinesis, AWS SNS, AWS SQS
Cache: Redis, Memcached (in progress)
Databases: Apache HBase, Cassandra, Hive (HCatalog), Mongo, JDBC
Indexing: Apache Solr, Elasticsearch

And other nice ecosystem tools / libraries:
Scio: Scala API by Spotify
Euphoria: Alternative Java API closer to Java 8 collections
Extensions: joins, sorting, probabilistic data structures, etc.

33

34

A simple evolution example

A log analysis simple example

Logs rotated and stored in HDFS and analyzed daily to measure user engagement.
Running on-premise Hadoop cluster with Spark

Data:

Output:

35

user01, 32 urls, 2018/03/07

64.242.88.10 user01 07/Mar/2018:16:05:49 /news/abfg6f

64.242.88.10 user01 07/Mar/2018:16:05:49 /news/de0aff

...

A log analysis simple example

PCollection<KV<User, Long>> numVisits =

 pipeline

 .apply(TextIO.read().from("hdfs://..."))

 .apply(MapElements.via(new ParseLog()))

 .apply(Count.perKey());

36

$ mvn exec:java -Dexec.mainClass=beam.example.loganalysis.Main -Pspark-runner

-Dexec.args="--runner=SparkRunner --master=tbd-bench"

A log analysis simple example

Remember the software engineering maxima:

Requirements always change

We want to identify user sessions and calculate the number of URL visits per session
and we need quicker updates from a different source, a Kafka topic
and we will run this in a new Flink cluster

* Session = a sustained burst of activity

37

A log analysis simple example

PCollection<KV<User, Long>> numVisitsPerSession =

pipeline

 .apply(

 KafkaIO.<Long, String>read()

 .withBootstrapServers("hostname")

 .withTopic("visits"))

 .apply(Values.create())

 .apply(MapElements.via(new ParseLog()))

 .apply(Window.into(Sessions.withGapDuration(Duration.standardMinutes(10))))

 .apply(Count.perKey());

38

$ mvn exec:java -Dexec.mainClass=beam.example.loganalysis.Main -Pflink-runner

-Dexec.args="--runner=FlinkRunner --master=realtime-cluster-master"

Apache Beam Summary

Expresses data-parallel batch and streaming algorithms with one unified API.

Cleanly separates data processing logic from runtime requirements.

Supports execution on multiple distributed processing runtime environments.

Integrates with the larger data processing ecosystem.

39

40

Current status and upcoming features

Beam is evolving too...

● Streaming SQL support via Apache Calcite

● Schema-aware PCollections friendlier APIs

● Composable IO Connectors: Splittable DoFn (SDF) (New API)

● Portability: Open source runners support for language portability

● Go SDK finally gophers become first class citizens on Big Data

41

IO connectors APIs are too strict

"Source" "Transform" "Sink"

A B

InputFormat / Receiver / SourceFunction / ...

Configuration:
Filepattern
Query string
Topic name
…

OutputFormat / Sink / SinkFunction / ...

Configuration:
Directory
Table name
Topic name
…

SDF - Enable composable IO APIs

"Source" "Transform" "Sink"

A B

My filenames come on a
Kafka topic. I want to know which

records failed to write

I want to kick off another
transform after writing

I have a table per client +
table of clients

Narrow APIs
are not

hackable

Google Cloud Platform 44

Element: what work

Restriction: what part of the work

Design: s.apache.org/splittable-do-fn

Splittable DoFn (SDF): Partial work via restrictions

DoFn

SDF

Element

(Element, Restriction)

Dynamically
Splittable

* More details in this video by Eugene Kirpichov

https://s.apache.org/splittable-do-fn
https://www.youtube.com/watch?v=bhj4Bjczb8I

45

Language portability

● If I run a Beam python pipeline on the
Spark runner, is it translated to
PySpark?

● Wait, can I execute python on a Java
based runner?

● Can I use the python Tensorflow
transform from a Java pipeline?

● I want to connect to Kafka from
Python but there is not a connector
can I use the Java one?

No

Beam Model: Fn Runners

Apache
Flink

Apache
Spark

Beam Model: Pipeline Construction

Other
LanguagesBeam Java

Beam
Python

Execution Execution

Cloud
Dataflow

Execution

46

How do Java-based runners do work today?

SDK Runner

Client

Job
Master

Cluster

Executor
(Runner)

Worker

Worker

Executor / Fn API

Worker
Pipeline

UDF

Portability Framework

SDK

Job Server

Artifact
Staging

Staging
Location

DFS

Client

Job

Master

Cluster

Executor
(Runner)

Docker
 Container

Worker

Worker

Executor / Fn API

Provision Control Data

Artifact
Retrieval State Logging

Worker

Artifacts

SDK Harness
Pipeline
protobuf UDF

Language portability advantages

Isolation of user code
Isolated configuration of user environment
Multiple language execution
Mix user code in different languages
Makes creating new SDK easier (homogeneous)

Issues

Performance overhead (15% in early evaluation). via extra RPC + container
Extra component (docker)
A bit more complex but it is the price of reuse and consistent environments

Go SDK

func main() {

 p := beam.NewPipeline()

 s := p.Root()

 lines := textio.Read(s, *input)

 counted := CountWords(s, lines)

 formatted := beam.ParDo(s, formatFn, counted)

 textio.Write(s, *output, formatted)

 if err := beamx.Run(context.Background(), p); err != nil {

 log.Fatalf("Failed to execute job: %v", err)

 }

}

First user SDK completely based on Portability API.

49

Contribute

A vibrant community of contributors + companies:
Google, data Artisans, Lyft, Talend, Yours?

● Try it and help us report (and fix) issues.
● Multiple Jiras that need to be taken care of.
● New feature requests, new ideas, more documentation.
● More SDKs (more languages) .net anyone please, etc
● More runners, improve existing, a native go one maybe?

Beam is in a perfect shape to jump in.

First Stable Release. 2.0.0 API stability contract (May 2017)
Current: 2.6.0

51

Learn More!

Apache Beam
 https://beam.apache.org

The World Beyond Batch 101 & 102
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102

Join the mailing lists!
user-subscribe@beam.apache.org
dev-subscribe@beam.apache.org

Follow @ApacheBeam on Twitter

* The nice slides with animations were created by Tyler Akidau and Frances Perry and used with authorization.
Special thanks too to Eugene Kirpichov, Dan Halperin and Alexey Romanenko for ideas for this presentation.

https://beam.apache.org
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102
https://beam.apache.org/contribute/presentation-materials/

52

Thanks

