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Why are we here?

✢Modern hardware being continuously developed and adopted 

into cloud

✢ Core count growth

✢ Spinning disks to NVMe drives

✢ Networking standards evolving faster 10G  25G  100G w/ RDMA 

✢Requires software tuning/optimizations to take full advantage of 

the hardware is challenging



✢Many cloud frameworks are built in Java

✢Java I/O is lacking native features as available in C/C++

✢ Catching up with new feature enablement in line with modern hardware 
development

✢ New 6 month Java release cadence might help

✢Developers

✢ Exploring new technologies for performance vs. stay compatible

Why are we here?



Apache Cassandra-Stress read performance

✢ CPU and storage utilization on a tuned performance 
node (56C, 192GB DRAM, 4 NVMe drives)

✢ 55% CPU cycles spent in kernel

✢ 47% in memory management and IRQ locks

✢ Highest function on the call chain: try_to_unmap_one
(9.5%) hints to kernel memory page swapping

✢ Disk 50% utilized: bandwidth and iops
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✢Java uses buffered I/O by default

✢All I/O buffered by kernel in DRAM (filesystem cache)

✢Kernel constantly refill/cleanup the filesystem cache, especially at 
high throughput level provided by multi-cores and NVMe drives

What is being swapped?



Bypass the filesystem cache

✢ “Direct I/O is a system-wide feature that supports direct 
reads/writes from/to storage device to/from user memory space 
bypassing system page cache.” – Facebook RocksDB Wiki1

✢Enabled on many database applications built in C/C++

✢Direct I/O support added to Java* SE Development Kit 10

✢ GA release on March 2018

✢ APIs are designed for easy use and minimal changes to applications

1. https://github.com/facebook/rocksdb/wiki/Direct-IO

https://github.com/facebook/rocksdb/wiki/Direct-IO


Direct I/O’s Pros

✢No CPU cycles or memory bandwidth spent in copies between 
filesystem cache and user space

✢Avoid filesystem cache thrashing

✢Provide consistent I/O throughput and latency 

✢Avoid redundant caching when application already has its own 
caching



Direct I/O’s Cons

✢Direct I/O is not intentioned for traditional spinning devices

✢Might not be suitable for sequential I/O which greatly benefits 
from filesystem cache

✢Need extra programming effort to handle the alignment 
between I/O size, user buffer and storage device block size.



DIRECT I/O Java API

Enum: ExtendedOpenOption

Enum Constant: DIRECT

Description: Flag for Direct I/O defined as one of the ExtendedOpenOption. The flag could be 

used in FileChannel.open()

Class: FileStore and inherited classes

Method: public int getBlockSize() throws IOException

Description: Return the block size for the disk in bytes. The value could be used for Direct I/O 

alignment. 



Java Code Example – Buffered IO
import java.nio.file.Paths;

import java.nio.file.Path;

import java.nio.channels.FileChannel;

import java.nio.ByteBuffer;

import java.nio.file.FileStore;

import java.nio.file.Files;

public class testDirectIO {

public static void main (String[] args) throws IOException {

int fileSize = 8192;

File datafile = File.createTempFile(“myfile", null);

datafile.deleteOnExit();

FileOutputStream fos = new FileOutputStream(datafile);

fos.write(new byte[fileSize]);

fos.close();

String path = datafile.getAbsolutePath();

Path p = Paths.get(path);

FileChannel newChannel = FileChannel.open(p);

ByteBuffer buf = ByteBuffer.allocateDirect(fileSize);

int result = newChannel.read(buf);

newChannel.close();

}

}



Java Code Example – DIRECT I/O 
import java.nio.file.Paths;

import java.nio.file.Path;

import java.nio.channels.FileChannel;

import java.nio.ByteBuffer;

import com.sun.nio.file.ExtendedOpenOption;

import java.nio.file.FileStore;

import java.nio.file.Files;

public class testDirectIO {

public static void main (String[] args) throws IOException {

int fileSize = 8192;

File datafile = File.createTempFile(“myfile", null);

datafile.deleteOnExit();

FileOutputStream fos = new FileOutputStream(datafile);

fos.write(new byte[fileSize]);

fos.close();

String path = datafile.getAbsolutePath();

Path p = Paths.get(path);

FileChannel newChannel = FileChannel.open(p,               

ExtendedOpenOption.DIRECT);

FileStore store = Files.getFileStore(p);

int alignment = store.getBlockSize();

ByteBuffer buf = ByteBuffer.allocateDirect(fileSize + 

alignment).alignedSlice(alignment);

int result = newChannel.read(buf);

newChannel.close();

}

}



Improvements with Direct I/O

✢Kernel time reduce from 55% to 5%  less overhead

✢User time increase from 35% to 65%  more meaningful work are done

✢Disk bandwidth improved by 2.1x and all 4 NVMe SSDs are fully utilized

✢2.2x throughput improvements on throughput with 90% reduction on 

99th percentile latency

✢Details on Apache* Cassandra* code changes are available at 

https://issues.apache.org/jira/browse/CASSANDRA-14466

https://issues.apache.org/jira/browse/CASSANDRA-14466


Who else may benefit from Direct I/O?

✢Applications that read randomly

✢ A “proof of concept” implemented to Apache HBase* bucket cache

✢ Random reads shows up to 2.2x improvement on throughput and 56% 
reduction on average latency across different load levels

✢Applications with build-in cache(s)

✢ Ex: Apache Cassandra*, Apache HBase*

✢Applications that generate single-use temporarily files

✢ Ex: Apache Spark* shuffle service

✢Multi-tenanted applications running on the same platform



✢ Micro workload for measuring network latency across different transfer 
sizes

✢ Single threaded

✢ Latency is measured at the client side as round trip time

✢ 35% CPU utilization observed with 32KBytes transfer size on 10Gb NIC

✢ 30% are spent in kernel. Mostly handling memory copies and tcp transmissions

✢ Network device is far from being utilized

Network transfer performance

Client Server

Send X bytes to server

Send the same X bytes 
back upon receiving



TCP/IP networking

✢ Java supports socket-based networking 

✢ Based on traditional TCP/IP stack 

✢ Leverage kernel socket APIs, EX: bind, listen, connect, accept, send and receive

✢High kernel utilization is due to multiple back-forth memory copies 
between kernel and user spaces

✢Network bandwidth not scaling with increased device capabilities

✢Modern devices need an optimized networking stack for high 
bandwidth and low latency



Remote Direct Memory Access (RDMA)

Information Source:  https://en.wikipedia.org/wiki/Remote_direct_memory_access

✢Enable RDMA capable network adapters to transfer data directly 
to/from application memory

✢Data transfers bypass OS kernel

✢Avoid multiple data copies between user and kernel spaces

✢Permit high-throughput, low-latency networking

✢Useful in massively parallel computer clusters

https://en.wikipedia.org/wiki/Remote_direct_memory_access


Enable RDMA in Java
✢Work-in-progress

✢ Java Enhancement Proposal (JEP): http://openjdk.java.net/jeps/337

✢ Java Bug System: https://bugs.openjdk.java.net/browse/JDK-8195160 

✢ Patch under review: http://cr.openjdk.java.net/~ylu/8195160.09/

✢Applications aiming at high network throughput and/or low 
latency may benefit from the feature:

✢ Apache* Spark*: shuffle service

✢ Apache* HBase* and Apache* Cassandra*: data replication, node repair, 
peer-peer communication

✢ Others

http://openjdk.java.net/jeps/337
https://bugs.openjdk.java.net/browse/JDK-8195160
http://cr.openjdk.java.net/~ylu/8195160.09/


Proposed Java API for RDMA

Class: jdk.net.Sockets

Methods:

openRdmaSocket: return a RDMA Socket

openRdmaServerSocket: return a RDMA Server Socket

openRdmaSocketChannel: return a RDMA SocketChannel

openRdmaServerSocketChannel: return a RDMA ServerSocketChannel

openRdmaSelector: return a RDMA channel selector



Java Server Side Code Example with TCP/IP
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;
import java.nio.ByteBuffer;
import java.io.IOException;
import java.net.InetSocketAddress;
import java.net.InetAddress;

public class WebServer {
public static void main (String [] args)

throws IOException {

ServerSocketChannel ssc = ServerSocketChannel.open();
InetAddress addr = InetAddress.getLocalHost();

InetSocketAddress hostAddress = new InetSocketAddress(addr, 9000);
ssc.bind(hostAddress);
SocketChannel client = ssc.accept();

int xfSize = Integer.parseInt(args[0]);
ByteBuffer buffer = ByteBuffer.allocate(xfSize);
int readCount = 0;
int writeCount = 0;
int readB = 0;
int writeB = 0;

while (readCount < xfSize) {
readB = client.read(buffer);
readCount = readCount + readB;

}
buffer.flip();
while (writeCount < xfSize) {

writeB = client.write(buffer);
writeCount = writeCount + writeB;

}
client.close();
ssc.close();

}
}



Java Server Side Code Example with RDMA
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;
import java.nio.ByteBuffer;
import java.io.IOException;
import java.net.InetSocketAddress;
import java.net.InetAddress;
import jdk.net.Sockets;

public class WebServer {
public static void main (String [] args)

throws IOException {

ServerSocketChannel ssc = Sockets.openRdmaServerSocketChannel();
InetAddress addr = InetAddress.getLocalHost();

InetSocketAddress hostAddress = new InetSocketAddress(addr, 9000);
ssc.bind(hostAddress);
SocketChannel client = ssc.accept();

int xfSize = Integer.parseInt(args[0]);
ByteBuffer buffer = ByteBuffer.allocate(xfSize);
int readCount = 0;
int writeCount = 0;
int readB = 0;
int writeB = 0;

while (readCount < xfSize) {
readB = client.read(buffer);
readCount = readCount + readB;

}
buffer.flip();
while (writeCount < xfSize) {

writeB = client.write(buffer);
writeCount = writeCount + writeB;

}
client.close();
ssc.close();

}
}



Java Client Side Code Example with TCP/IP

import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.SocketChannel;

public class WebClient {
public static void main(String args[]) throws IOException {

int xfSize = Integer.parseInt(args[0]);
InetSocketAddress hostAddress = new 

InetSocketAddress("30.30.30.1", 9000);

SocketChannel client = SocketChannel.open();
client.connect(hostAddress);

ByteBuffer buf = ByteBuffer.allocate(xfSize);
for (int i = 0; i < xfSize; i++) {

buf.put((byte)'a');
}
buf.flip();

int writeB = 0;
int writeCount = 0;
int readB = 0;
int readCount = 0;

while (writeCount < xfSize) {
writeB = client.write(buf);
writeCount = writeCount + writeB;

}
buf.flip();
while (readCount < xfSize) {

readB = client.read(buf);
readCount = readCount + readB;

}
client.close();

}
}



Java Client Side Code Example with RDMA

import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.SocketChannel;
import jdk.net.Sockets;

public class WebClient {
public static void main(String args[]) throws IOException {

int xfSize = Integer.parseInt(args[0]);
InetSocketAddress hostAddress = new 

InetSocketAddress("30.30.30.1", 9000);

SocketChannel client = Sockets.openRdmaSocketChannel();
client.connect(hostAddress);

ByteBuffer buf = ByteBuffer.allocate(xfSize);
for (int i = 0; i < xfSize; i++) {

buf.put((byte)'a');
}
buf.flip();

int writeB = 0;
int writeCount = 0;
int readB = 0;
int readCount = 0;

while (writeCount < xfSize) {
writeB = client.write(buf);
writeCount = writeCount + writeB;

}
buf.flip();
while (readCount < xfSize) {

readB = client.read(buf);
readCount = readCount + readB;

}
client.close();

}
}



Improvement with RDMA
✢ With 32KB transfer size

✢ Overall CPU utilization improved from 35% to 60%

✢ User space utilization improves from 6% to 47%

✢ Memory copies between user and kernel spaces are avoid which contributes to kernel utilization reductions

✢ Up to 75% reduction on 95th percentile latency
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Summary
✢ I/O infrastructure is key to cloud ecosystem

✢New Java libraries and APIs are being developed to scale 

modern storage and networking hardware devices

✢Exploring new features and optimize applications to take full 

advantage of the hardware



Q/A



Thank you


