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Real-Time is coming to Linux
What does that mean for you?
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Who is this talk for?
● Linux kernel developers

– Core kernel code

– Driver code

– File System code

– Pretty much anyone touching the Linux Kernel

● Those that want to know why PREEMPT_RT makes Linux different
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Who is this talk for?
● Linux kernel developers

– Core kernel code

– Driver code

– File System code

– Pretty much anyone touching the Linux Kernel

● Those that want to know why PREEMPT_RT makes Linux different

● Those that want to see how fast Steven talks in Real Time

3



Review
● What is Real-Time?
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Review
● What is Real-Time?

What is your favourite colour?
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Review
● What is Real-Time?

What is your favourite colour? BLUE
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Review
● What is Real-Time?

What is your favourite colour? no RED!
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Review
● What is Real-Time?

– The term is ambiguous
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Review
● What is Real-Time?

– The term is ambiguous

– Top definition from http://urbandictionary.com
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REAL TIME instantaneous; taking place at once as other things 
are also in progress. “When I surveyed the situation in real time, 
there were only 4 people who met the qualifications”.

#instantaneous #simultaneously #survey #in progress #process 
#momentary

http://urbandictionary.com/
https://www.urbandictionary.com/define.php?term=REAL%20TIME
https://www.urbandictionary.com/define.php?term=at%20once
https://www.urbandictionary.com/define.php?term=other%20things
https://www.urbandictionary.com/define.php?term=progress
https://www.urbandictionary.com/define.php?term=the%20situation
https://www.urbandictionary.com/define.php?term=in%20real%20time
https://www.urbandictionary.com/define.php?term=qualifications
https://www.urbandictionary.com/tags.php?tag=instantaneous
https://www.urbandictionary.com/tags.php?tag=simultaneously
https://www.urbandictionary.com/tags.php?tag=survey
https://www.urbandictionary.com/tags.php?tag=in%20progress
https://www.urbandictionary.com/tags.php?tag=process
https://www.urbandictionary.com/tags.php?tag=momentary


Review
● What is Real-Time?

– The term is ambiguous

– Top definition from http://WhatIs.com
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REAL TIME is a level of computer responsiveness that a user 
senses as sufficiently immediate or that enables the computer to 
keep up with some external process.

http://WhatIs.com/
https://www.urbandictionary.com/define.php?term=REAL%20TIME


Review
● What is Real-Time?

– The term is ambiguous

– Top definition from http://WhatIs.com
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REAL TIME is an adjective pertaining to computers or processes 
that operate in real time.

http://WhatIs.com/
https://www.urbandictionary.com/define.php?term=REAL%20TIME


Review
● What is Real-Time?

– The term is ambiguous

– Top definition from http://WhatIs.com
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REAL TIME describes a human rather than a machine sense of time.

http://WhatIs.com/
https://www.urbandictionary.com/define.php?term=REAL%20TIME


Review
● What is Real-Time?

– What does it mean as per PREEMPT_RT (aka “The Real-Time Patch”)?
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Review
● What is Real-Time?

– What does it mean as per PREEMPT_RT (aka “The Real-Time Patch”)?
● Means determinism

– Has nothing to do with speed
– Only latency

● Can calculate worse case scenarios

● Can determine what will happen
● Can determine when it will happen
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Review
● What is Real-Time?

– What does it mean as per PREEMPT_RT (aka “The Real-Time Patch”)?
● Means determinism

– Has nothing to do with speed
– Only latency

● Can calculate worse case scenarios

● Can determine what will happen
● Can determine when it will happen

● Should be called a Deterministic Operating System
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Review

16

DOS!



Review
● What’s the strategy?

– To make the kernel as preemptive as possible

– Remove preemption and interrupt disabling
● Where we can

– Allow scheduling to happen (almost) everywhere!
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Review
● What’s the strategy?

– To make the kernel as preemptive as possible

– Remove preemption and interrupt disabling
● Where we can

– Allow scheduling to happen (almost) everywhere!

Let the most important (highest priority) task run, when it wants to run.
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Enabling PREEMPT_RT
● In “Processor type and features”
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Enabling PREEMPT_RT
● In “Processor type and features”

– “No Forced Preemption” - CONFIG_PREEMPT_NONE

– “Voluntary Kernel Preemption” - CONFIG_PREEMPT_VOLUNTARY

– “Preemptible Kernel (Low-Latency Desktop)” - CONFIG_PREEMPT_LL

– “Preemptible Kernel (Basic RT) - CONFIG_PREEMPT_RTB

– “Full Preemptible Kernel” - CONFIG_PREEMPT_RT_FULL
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Enabling PREEMPT_RT
● In “Processor type and features”

– “No Forced Preemption” - CONFIG_PREEMPT_NONE

– “Voluntary Kernel Preemption” - CONFIG_PREEMPT_VOLUNTARY

– “Preemptible Kernel (Low-Latency Desktop)” - CONFIG_PREEMPT_LL

– “Preemptible Kernel (Basic RT) - CONFIG_PREEMPT_RTB

– “Full Preemptible Kernel” - CONFIG_ PREEMPT_RT _FULL
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Enabling PREEMPT_RT
● Interrupts as threads

– requst_threaded_irq( ) - Been in the kernel since 2009!

– All interrupts as threads (“threadirqs”) - Been in the kernel since 2011

● Not all interrupts become Threads
– IRQF_NO_THREAD

● Timer Interrupts
● IPI (Inter-Processor Interrupts)

– IRQF_PERCPU

– IRQF_ONESHOT
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Interrupts
● Normal Interrupt
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request_irq(unsigned int irq, irq_handler_t handler, unsigned long flags,
    const char *name, void *dev)

High Priority
Task

handler



Interrupts
● Threaded Interrupt
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request_threaded_irq(unsigned int irq, irq_handler_t handler,
            irq_handler_t thread_fn,
            unsigned long flags, const char *name, void *dev)

High Priority
Task

handler

thread_fn

schedule



Interrupts
● Forced Threaded Interrupts

25

request_threaded_irq(unsigned int irq, irq_handler_t handler,
            irq_handler_t thread_fn,
            unsigned long flags, const char *name, void *dev)

High Priority
Task

Interrupt

thread_fnhandler

schedule schedule



Enabling PREEMPT_RT
● spin_lock*( ) becomes a mutex

– Well, they are not really spinning locks anymore, are they?

– They do not disable preemption

– They do not disable interrupts (even spin_lock_irq*( ) )
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Enabling PREEMPT_RT
● spin_lock*( ) becomes a mutex

– Well, they are not really spinning locks anymore, are they?

– They do not disable preemption

– They do not disable interrupts (even spin_lock_irq*( ) )

How?     Why?
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Spin Locks

28

handler

take lock

take lock



Spin Locks
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handler

take lock

take lock

DEADLOCK!



Spin Locks
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take lock

handler

thread_fn

schedule

attempt to
take lock

release lock

thread_fn

aquired lock



Priority Inheritance
● Prevents Priority Inversion

● Currently only implemented for futex (Fast User-space muTEX)

● PREEMPT_RT adds it to spin_locks( ) and mutex_lock( )
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pthread_mutexattr_setprotocol(&attr, PTHREAD_PRIO_INHERIT)



Priority Inversion

32

preempted preempted

A

B

C

blocked



Priority Inheritance

33

A

B

C
preempted releases lock

wakes up

blocked sleeps



Enabling PREEMPT_RT
● rw_locks become more like rwsem

– Sleepable reader / writer locks

● Readers DO NOT HAVE PRIORITY INHERITANCE!

● Writers do inherit priority
– But they do not boost readers

● Try to avoid rw locks and sems
– Horrible for cache lines (they do not scale)

– Use RCU when you can
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Sleeping Spin Locks
● The ‘trylock’ issue

35

again:
spin_lock(&a);
[..]
if (!spin_trylock(&b)) {

spin_unlock(&a);
goto again;

}



Sleeping Spin Locks
● The ‘trylock’ issue

● Works fine for spinning locks, but not for mutex
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again:
spin_lock(&a);
[..]
if (!spin_trylock(&b)) {

spin_unlock(&a);
goto again;

}



Real Spinning Locks

take lock A

take lock B release lock B

try to acquire
lock B

release lock A

take lock B

CPU 0

CPU 1



Sleeping Spin Locks

take lock B

take lock A

try to acquire
lock B

release lock A



Sleeping Spin Locks
● One solution that works when applicable
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again:
spin_lock(&a);
[..]
if (!spin_trylock(&b)) {

spin_unlock(&a);
spin_lock(&b);
spin_unlock(&b);
goto again;

}



Sleeping Spin Locks

take lock B

take lock A

try to acquire
lock B

take lock B

acquire lock B



Per CPU variables?
● Variables that are only accessed by their associated CPU

● Only need to disable preemption

● Spin Locks no longer disable preemption
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Per CPU variables?
● Variables that are only accessed by their associated CPU

● Only need to disable preemption

● Spin Locks no longer disable preemption
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spin_lock(&mylock);

x = this_cpu_read(myX);
y = this_cpu_read(myY);
z = x + y;
this_cpu_write(myZ, z);

spin_unlock(&mylock);



Per CPU variables?
● Variables that are only accessed by their associated CPU

● Only need to disable preemption

● Spin Locks no longer disable preemption

● Spin Locks do disable migration!
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spin_lock(&mylock);

x = this_cpu_read(myX);
y = this_cpu_read(myY);
z = x + y;
this_cpu_write(myZ, z);

spin_unlock(&mylock);



Per CPU variables?
● May be protected by spin locks

● May be protected by preempt_disable( )

NOT BOTH!
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spin_lock(&mylock);

x = this_cpu_read(myX);
y = this_cpu_read(myY);
z = x + y;
this_cpu_write(myZ, z);

spin_unlock(&mylock);

preempt_disable();

x = this_cpu_read(myX);
y = this_cpu_read(myY);
z = x + y;
this_cpu_write(myZ, z);

preempt_enable();

Task A Task B



Per CPU variables?
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spin_lock(&mylock);

x = this_cpu_read(myX);

y = this_cpu_read(myY);
z = x + y;
this_cpu_write(myZ, z);

spin_unlock(&mylock);

preempt_disable();

x = this_cpu_read(myX);
y = this_cpu_read(myY);
z = x + y;
this_cpu_write(myZ, z);

preempt_enable();

Task A

Task B

Task A

schedule

schedule



● Preempt Disable is not bad

● If it is short!

Per CPU variables?

preempt_disable();

x = this_cpu_read(myX);
y = this_cpu_read(myY);
z = x + y;
this_cpu_write(myZ, z);

preempt_enable();



● Preempt Disable is not bad

● If it is short!

● Don’t do THIS!

Per CPU variables?

preempt_disable();

x = this_cpu_read(myX);
y = this_cpu_read(myY);

w = kmalloc(sizeof(*z), GFP_ATOMIC);
if (!w)

goto out;

z = x + y;
this_cpu_write(myZ, z);
w->foo = z;

out:
preempt_enable();



● Preempt Disable is not bad

● If it is short!

● DO this!

Per CPU variables?

w = kmalloc(sizeof(*z), GFP_KERNEL);
if (!w)

return;

preempt_disable();

x = this_cpu_read(myX);
y = this_cpu_read(myY);
z = x + y;
this_cpu_write(myZ, z);
w->foo = z;

preempt_enable();



● Preempt Disable is not bad

● If it is short!

● DO this!

Per CPU variables?

w = kmalloc(sizeof(*z), GFP_KERNEL);
if (!w)

return;

preempt_disable();

x = this_cpu_read(myX);
y = this_cpu_read(myY);
z = x + y;
this_cpu_write(myZ, z);
w->foo = z;

preempt_enable();



● Preempt Disable is not bad

● If it is short!

● Keep slow operations OUT of preempt disable critical sections
– This is good for PREEMPT_RT

Per CPU variables?



● Preempt Disable is not bad

● If it is short!

● Keep slow operations OUT of preempt disable critical sections
– This is good for PREEMPT_RT

– This is good for mainline too!

Per CPU variables?



Disabling interrupts
● Avoid local_irq_save( )

– Most likely it’s a bug if you are using it

● Use spin_lock_irqsave( ) (or spin_lock_irq( ))
– They disable interrupts on non PREEMPT_RT

– They don’t on PREEMPT_RT (that’s what you want!)
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Disabling interrupts
● Avoid local_irq_save( )

– Most likely it’s a bug if you are using it

● Use spin_lock_irqsave( ) (or spin_lock_irq( ))
– They disable interrupts on non PREEMPT_RT

– They don’t on PREEMPT_RT (that’s what you want!)

NEVER DO!  ...
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local_irq_save(flags);
spin_lock(&mylock);

spin_unlock(&mylock);
local_irq_restore(flags);

or



softirqs
● Are a real PITA

● They are “raised”
– Asked to run

● Raised by interrupts

● Raised by tasks
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softirqs
● local_bh_disable( )  - and spin_lock_bh( )

– disables preemption non PREEMPT_RT

– preemption stays enabled on PREEMPT_RT

– migration disabled
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softirqs
● Currently (in mainline)

– Are indiscriminate in what they run
● No priority between them
● If one runs for a long time, no other one can run on that CPU

– No priority between what takes precedence 
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softirqs
● Currently (in mainline)

– Are indiscriminate in what they run
● No priority between them
● If one runs for a long time, no other one can run on that CPU

– No priority between what takes precedence 

● In PREEMPT_RT
– Runs by who raises them

● A mask is used

– local_bh_enable( )
● Runs the softirqs raised by the task

– ksoftirq - runs the rest of them
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softirqs
● Mainline is currently suffering from softirqs

– Starvation of one softirq by another

– Frederic Weisbecker has a patch set out to help

– Influenced by the work from the PREEMPT_RT patch

– Using a mask and also allow softirqs to preempt each other
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softirqs NON_PREEMPT

59

High Priority
Task

handler softirqs



softirqs NON_PREEMPT
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High Priority
Task

interrupt

handler softirqs



raw_spin_locks
● raw_spin_lock*( ) is still a spinning lock

– They were introduced in Linux in 2009 (2.6.33!)

– They are meaningless in mainline
● Were added for for PREEMPT_RT only!

● Makes order important

– Can not call raw_spin_lock( ) followed by spin_lock( )

– Same as current spin_lock( ) followed by mutex_lock( )

61



raw_spin_locks
● Used when you definitely CAN NOT SLEEP!

● Don’ t use them just because you can’t “figure it out”
– “scheduling while atomic”

– Keep irq disabling short

– Keep preempt disabling short

● Your lock is not as important as you think it is

62



Questions?
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