
© 2016 VMware Inc. All rights
reserved.

© 2016 VMware Inc. All rights
reserved.

Real-Time is coming to Linux
What does that mean for you?

Steven Rostedt
10/24/2018

Who is this talk for?
● Linux kernel developers

– Core kernel code

– Driver code

– File System code

– Pretty much anyone touching the Linux Kernel

● Those that want to know why PREEMPT_RT makes Linux different

2

Who is this talk for?
● Linux kernel developers

– Core kernel code

– Driver code

– File System code

– Pretty much anyone touching the Linux Kernel

● Those that want to know why PREEMPT_RT makes Linux different

● Those that want to see how fast Steven talks in Real Time

3

Review
● What is Real-Time?

4

Review
● What is Real-Time?

What is your favourite colour?

5

Review
● What is Real-Time?

What is your favourite colour? BLUE

6

Review
● What is Real-Time?

What is your favourite colour? no RED!

7

Review
● What is Real-Time?

– The term is ambiguous

8

Review
● What is Real-Time?

– The term is ambiguous

– Top definition from http://urbandictionary.com

9

REAL TIME instantaneous; taking place at once as other things
are also in progress. “When I surveyed the situation in real time,
there were only 4 people who met the qualifications”.

#instantaneous #simultaneously #survey #in progress #process
#momentary

http://urbandictionary.com/
https://www.urbandictionary.com/define.php?term=REAL%20TIME
https://www.urbandictionary.com/define.php?term=at%20once
https://www.urbandictionary.com/define.php?term=other%20things
https://www.urbandictionary.com/define.php?term=progress
https://www.urbandictionary.com/define.php?term=the%20situation
https://www.urbandictionary.com/define.php?term=in%20real%20time
https://www.urbandictionary.com/define.php?term=qualifications
https://www.urbandictionary.com/tags.php?tag=instantaneous
https://www.urbandictionary.com/tags.php?tag=simultaneously
https://www.urbandictionary.com/tags.php?tag=survey
https://www.urbandictionary.com/tags.php?tag=in%20progress
https://www.urbandictionary.com/tags.php?tag=process
https://www.urbandictionary.com/tags.php?tag=momentary

Review
● What is Real-Time?

– The term is ambiguous

– Top definition from http://WhatIs.com

10

REAL TIME is a level of computer responsiveness that a user
senses as sufficiently immediate or that enables the computer to
keep up with some external process.

http://WhatIs.com/
https://www.urbandictionary.com/define.php?term=REAL%20TIME

Review
● What is Real-Time?

– The term is ambiguous

– Top definition from http://WhatIs.com

11

REAL TIME is an adjective pertaining to computers or processes
that operate in real time.

http://WhatIs.com/
https://www.urbandictionary.com/define.php?term=REAL%20TIME

Review
● What is Real-Time?

– The term is ambiguous

– Top definition from http://WhatIs.com

12

REAL TIME describes a human rather than a machine sense of time.

http://WhatIs.com/
https://www.urbandictionary.com/define.php?term=REAL%20TIME

Review
● What is Real-Time?

– What does it mean as per PREEMPT_RT (aka “The Real-Time Patch”)?

13

Review
● What is Real-Time?

– What does it mean as per PREEMPT_RT (aka “The Real-Time Patch”)?
● Means determinism

– Has nothing to do with speed
– Only latency

● Can calculate worse case scenarios

● Can determine what will happen
● Can determine when it will happen

14

Review
● What is Real-Time?

– What does it mean as per PREEMPT_RT (aka “The Real-Time Patch”)?
● Means determinism

– Has nothing to do with speed
– Only latency

● Can calculate worse case scenarios

● Can determine what will happen
● Can determine when it will happen

● Should be called a Deterministic Operating System

15

Review

16

DOS!

Review
● What’s the strategy?

– To make the kernel as preemptive as possible

– Remove preemption and interrupt disabling
● Where we can

– Allow scheduling to happen (almost) everywhere!

17

Review
● What’s the strategy?

– To make the kernel as preemptive as possible

– Remove preemption and interrupt disabling
● Where we can

– Allow scheduling to happen (almost) everywhere!

Let the most important (highest priority) task run, when it wants to run.

18

Enabling PREEMPT_RT
● In “Processor type and features”

19

Enabling PREEMPT_RT
● In “Processor type and features”

– “No Forced Preemption” - CONFIG_PREEMPT_NONE

– “Voluntary Kernel Preemption” - CONFIG_PREEMPT_VOLUNTARY

– “Preemptible Kernel (Low-Latency Desktop)” - CONFIG_PREEMPT_LL

– “Preemptible Kernel (Basic RT) - CONFIG_PREEMPT_RTB

– “Full Preemptible Kernel” - CONFIG_PREEMPT_RT_FULL

20

Enabling PREEMPT_RT
● In “Processor type and features”

– “No Forced Preemption” - CONFIG_PREEMPT_NONE

– “Voluntary Kernel Preemption” - CONFIG_PREEMPT_VOLUNTARY

– “Preemptible Kernel (Low-Latency Desktop)” - CONFIG_PREEMPT_LL

– “Preemptible Kernel (Basic RT) - CONFIG_PREEMPT_RTB

– “Full Preemptible Kernel” - CONFIG_ PREEMPT_RT _FULL

21

Enabling PREEMPT_RT
● Interrupts as threads

– requst_threaded_irq() - Been in the kernel since 2009!

– All interrupts as threads (“threadirqs”) - Been in the kernel since 2011

● Not all interrupts become Threads
– IRQF_NO_THREAD

● Timer Interrupts
● IPI (Inter-Processor Interrupts)

– IRQF_PERCPU

– IRQF_ONESHOT

22

Interrupts
● Normal Interrupt

23

request_irq(unsigned int irq, irq_handler_t handler, unsigned long flags,
 const char *name, void *dev)

High Priority
Task

handler

Interrupts
● Threaded Interrupt

24

request_threaded_irq(unsigned int irq, irq_handler_t handler,
 irq_handler_t thread_fn,
 unsigned long flags, const char *name, void *dev)

High Priority
Task

handler

thread_fn

schedule

Interrupts
● Forced Threaded Interrupts

25

request_threaded_irq(unsigned int irq, irq_handler_t handler,
 irq_handler_t thread_fn,
 unsigned long flags, const char *name, void *dev)

High Priority
Task

Interrupt

thread_fnhandler

schedule schedule

Enabling PREEMPT_RT
● spin_lock*() becomes a mutex

– Well, they are not really spinning locks anymore, are they?

– They do not disable preemption

– They do not disable interrupts (even spin_lock_irq*())

26

Enabling PREEMPT_RT
● spin_lock*() becomes a mutex

– Well, they are not really spinning locks anymore, are they?

– They do not disable preemption

– They do not disable interrupts (even spin_lock_irq*())

How? Why?

27

Spin Locks

28

handler

take lock

take lock

Spin Locks

29

handler

take lock

take lock

DEADLOCK!

Spin Locks

30

take lock

handler

thread_fn

schedule

attempt to
take lock

release lock

thread_fn

aquired lock

Priority Inheritance
● Prevents Priority Inversion

● Currently only implemented for futex (Fast User-space muTEX)

● PREEMPT_RT adds it to spin_locks() and mutex_lock()

31

pthread_mutexattr_setprotocol(&attr, PTHREAD_PRIO_INHERIT)

Priority Inversion

32

preempted preempted

A

B

C

blocked

Priority Inheritance

33

A

B

C
preempted releases lock

wakes up

blocked sleeps

Enabling PREEMPT_RT
● rw_locks become more like rwsem

– Sleepable reader / writer locks

● Readers DO NOT HAVE PRIORITY INHERITANCE!

● Writers do inherit priority
– But they do not boost readers

● Try to avoid rw locks and sems
– Horrible for cache lines (they do not scale)

– Use RCU when you can

34

Sleeping Spin Locks
● The ‘trylock’ issue

35

again:
spin_lock(&a);
[..]
if (!spin_trylock(&b)) {

spin_unlock(&a);
goto again;

}

Sleeping Spin Locks
● The ‘trylock’ issue

● Works fine for spinning locks, but not for mutex

36

again:
spin_lock(&a);
[..]
if (!spin_trylock(&b)) {

spin_unlock(&a);
goto again;

}

Real Spinning Locks

take lock A

take lock B release lock B

try to acquire
lock B

release lock A

take lock B

CPU 0

CPU 1

Sleeping Spin Locks

take lock B

take lock A

try to acquire
lock B

release lock A

Sleeping Spin Locks
● One solution that works when applicable

39

again:
spin_lock(&a);
[..]
if (!spin_trylock(&b)) {

spin_unlock(&a);
spin_lock(&b);
spin_unlock(&b);
goto again;

}

Sleeping Spin Locks

take lock B

take lock A

try to acquire
lock B

take lock B

acquire lock B

Per CPU variables?
● Variables that are only accessed by their associated CPU

● Only need to disable preemption

● Spin Locks no longer disable preemption

41

Per CPU variables?
● Variables that are only accessed by their associated CPU

● Only need to disable preemption

● Spin Locks no longer disable preemption

42

spin_lock(&mylock);

x = this_cpu_read(myX);
y = this_cpu_read(myY);
z = x + y;
this_cpu_write(myZ, z);

spin_unlock(&mylock);

Per CPU variables?
● Variables that are only accessed by their associated CPU

● Only need to disable preemption

● Spin Locks no longer disable preemption

● Spin Locks do disable migration!

43

spin_lock(&mylock);

x = this_cpu_read(myX);
y = this_cpu_read(myY);
z = x + y;
this_cpu_write(myZ, z);

spin_unlock(&mylock);

Per CPU variables?
● May be protected by spin locks

● May be protected by preempt_disable()

NOT BOTH!

44

spin_lock(&mylock);

x = this_cpu_read(myX);
y = this_cpu_read(myY);
z = x + y;
this_cpu_write(myZ, z);

spin_unlock(&mylock);

preempt_disable();

x = this_cpu_read(myX);
y = this_cpu_read(myY);
z = x + y;
this_cpu_write(myZ, z);

preempt_enable();

Task A Task B

Per CPU variables?

45

spin_lock(&mylock);

x = this_cpu_read(myX);

y = this_cpu_read(myY);
z = x + y;
this_cpu_write(myZ, z);

spin_unlock(&mylock);

preempt_disable();

x = this_cpu_read(myX);
y = this_cpu_read(myY);
z = x + y;
this_cpu_write(myZ, z);

preempt_enable();

Task A

Task B

Task A

schedule

schedule

● Preempt Disable is not bad

● If it is short!

Per CPU variables?

preempt_disable();

x = this_cpu_read(myX);
y = this_cpu_read(myY);
z = x + y;
this_cpu_write(myZ, z);

preempt_enable();

● Preempt Disable is not bad

● If it is short!

● Don’t do THIS!

Per CPU variables?

preempt_disable();

x = this_cpu_read(myX);
y = this_cpu_read(myY);

w = kmalloc(sizeof(*z), GFP_ATOMIC);
if (!w)

goto out;

z = x + y;
this_cpu_write(myZ, z);
w->foo = z;

out:
preempt_enable();

● Preempt Disable is not bad

● If it is short!

● DO this!

Per CPU variables?

w = kmalloc(sizeof(*z), GFP_KERNEL);
if (!w)

return;

preempt_disable();

x = this_cpu_read(myX);
y = this_cpu_read(myY);
z = x + y;
this_cpu_write(myZ, z);
w->foo = z;

preempt_enable();

● Preempt Disable is not bad

● If it is short!

● DO this!

Per CPU variables?

w = kmalloc(sizeof(*z), GFP_KERNEL);
if (!w)

return;

preempt_disable();

x = this_cpu_read(myX);
y = this_cpu_read(myY);
z = x + y;
this_cpu_write(myZ, z);
w->foo = z;

preempt_enable();

● Preempt Disable is not bad

● If it is short!

● Keep slow operations OUT of preempt disable critical sections
– This is good for PREEMPT_RT

Per CPU variables?

● Preempt Disable is not bad

● If it is short!

● Keep slow operations OUT of preempt disable critical sections
– This is good for PREEMPT_RT

– This is good for mainline too!

Per CPU variables?

Disabling interrupts
● Avoid local_irq_save()

– Most likely it’s a bug if you are using it

● Use spin_lock_irqsave() (or spin_lock_irq())
– They disable interrupts on non PREEMPT_RT

– They don’t on PREEMPT_RT (that’s what you want!)

52

Disabling interrupts
● Avoid local_irq_save()

– Most likely it’s a bug if you are using it

● Use spin_lock_irqsave() (or spin_lock_irq())
– They disable interrupts on non PREEMPT_RT

– They don’t on PREEMPT_RT (that’s what you want!)

NEVER DO! ...

53

local_irq_save(flags);
spin_lock(&mylock);

spin_unlock(&mylock);
local_irq_restore(flags);

or

softirqs
● Are a real PITA

● They are “raised”
– Asked to run

● Raised by interrupts

● Raised by tasks

54

softirqs
● local_bh_disable() - and spin_lock_bh()

– disables preemption non PREEMPT_RT

– preemption stays enabled on PREEMPT_RT

– migration disabled

55

softirqs
● Currently (in mainline)

– Are indiscriminate in what they run
● No priority between them
● If one runs for a long time, no other one can run on that CPU

– No priority between what takes precedence

56

softirqs
● Currently (in mainline)

– Are indiscriminate in what they run
● No priority between them
● If one runs for a long time, no other one can run on that CPU

– No priority between what takes precedence

● In PREEMPT_RT
– Runs by who raises them

● A mask is used

– local_bh_enable()
● Runs the softirqs raised by the task

– ksoftirq - runs the rest of them

57

softirqs
● Mainline is currently suffering from softirqs

– Starvation of one softirq by another

– Frederic Weisbecker has a patch set out to help

– Influenced by the work from the PREEMPT_RT patch

– Using a mask and also allow softirqs to preempt each other

58

softirqs NON_PREEMPT

59

High Priority
Task

handler softirqs

softirqs NON_PREEMPT

60

High Priority
Task

interrupt

handler softirqs

raw_spin_locks
● raw_spin_lock*() is still a spinning lock

– They were introduced in Linux in 2009 (2.6.33!)

– They are meaningless in mainline
● Were added for for PREEMPT_RT only!

● Makes order important

– Can not call raw_spin_lock() followed by spin_lock()

– Same as current spin_lock() followed by mutex_lock()

61

raw_spin_locks
● Used when you definitely CAN NOT SLEEP!

● Don’ t use them just because you can’t “figure it out”
– “scheduling while atomic”

– Keep irq disabling short

– Keep preempt disabling short

● Your lock is not as important as you think it is

62

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

