Comparison of Voice Assistant SDKs for Embedded Linux

Leon Anavi
Konsulko Group
leon.anavi@konsulko.com
leon@anavi.org
ELCE 2018
Konsulko Group

- Services company specializing in Embedded Linux and Open Source Software
- Hardware/software build, design, development, and training services
- Based in San Jose, CA with an engineering presence worldwide
- http://konsulko.com
Agenda

- Introduction to smart speakers with voice assistants
- Overview of Amazon Alexa, Google Assistant and Mycroft SDK for integration in embedded Linux devices
- Showcases and conclusions
Virtual assistants

- AliGenie
- Amazon Alexa
- Yandex Alice
- Samsung Bixby
- Braina
- Clova
- Microsoft Cortana
- Google Assistant
- Mycroft
- Apple Siri
- Voice Mate
- More ...
Technologies in Smart Speakers

A.I. & Big Data

Application Development

Internet of Things
Key Software Ingredients

- Artificial Intelligence & Big Data
- Wake word detection
- Text to speech (TTS)
- Speech to text (STT)
- Board bring-up
- 3rd party applications
Smart Speaker Market

U.S. Smart Speaker Market Share - May 2018

- 61.9% Amazon
- 26.9% Google
- 4.1% Apple
- 3.8% Sonos
- 3.4% Others

Source: Voicebot Voice Shopping US Consumer Adoption and Attitudes 2018 Report

Global Smart Speaker Sales - Q1 2018

- 45.6% US
- 20% China
- 8.1% Korea
- 26.3% Rest of World

Source: Canalys May 2018

Public statistics from https://voicebot.ai/
Amazon Alexa
Amazon Alexa

- Virtual assistant powered by AI and developed by Amazon
- Available for Fire OS, iOS and Android
- Powers Amazon devices such as Echo smart speakers
- Initial release November 2014
- Requires Amazon Alexa app on a smartphone to setup the smart devices
Alexa Features

- Multilingual support
- Supports several wake words (limited number of options)
- Voice profile for personalized experience
- Alexa to Alexa calling and messaging
- Mobile or landline calls in the US, Canada, and Mexico
Developer opportunities with Amazon Alexa

- Integration of Amazon Alexa in custom hardware devices using an **SDK**
- Extend the functionality of Alexa compatible devices by developing software applications called **Skills**
Amazon Smart Speakers

- Amazon Echo
- Amazon Echo Dot
- Amazon Echo Spot
- Amazon Echo Tap
- Amazon Echo Show
- Amazon Echo Plus
3rd Party Devices with Alexa

- Ecobee4 Smart Thermostat
- Element EL4KAMZ17 (Amazon Fire TV Edition)
- Eufy Genie
- Fabriq Chorus and Riff
- Garmin Speak
- C by GE Sol Smart Lamp
- iHome AVS16 Alarm Clock
- LG Hub Robot
- More ...
AVS Device SDK

- Alexa Voice Service (AVS)
- An easy-to-use SDK for commercial device makers to integrate Alexa into connected products
- Available at GitHub under Apache License 2.0
 https://github.com/alexa/avs-device-sdk
- 69 commits, 24 releases, 23 contributors
- Provides C++-based (11 or later) libraries
- Compatible with Android, macOS, Windows 64-bit, GNU/Linux distributions such as Ubuntu, Raspbian
How does AVS SDK work?

SDK Architecture

- Shared Data Stream (SDS)
- Audio Input Processor (AIP)
- Key Word Detection (KWD)
- Wake Word Engine/Model
- Alexa Communication Library (ACL)
- Alexa Directive Sequencer Library (ADSL)
- Activity Focus Manager Library (AFML)
- AVS Protocol
- Capability Agent
- Media Player
- Output Reference Signal

Legend:
- Source
- Third-Party Binary
AVS on Raspberry Pi

- Assemble Raspberry Pi with mic and a speaker
- Install Raspbian OS on microSD card and boot it
- Download the AVS Device SDK
- Input your AVS credentials
- Build the AVS Device SDK
- Get a Refresh Token to maintain a connection with the cloud
- Run the sample application
- Details at: https://developer.amazon.com/docs/alexa-voice-service/set-up-raspberry-pi.html
3rd Party Dev Kits

Recommended 3rd party development kits for prototyping:

- XMOS VocalFusion 4-Mic Kit
- Synaptics AudioSmart 2-Mic Dev Kit for Amazon AVS with NXP SoC
- Intel Speech Enabling Developer Kit
- Amlogic A113X1 Far-Field Dev Kit for Amazon AVS
- Allwinner SoC-Only 3-Mic Far-Field Dev Kit for Amazon AVS
- DSPG HDClear 3-Mic Development Kit for Amazon AVS
Launching Commercial Devices with AVS on the Market

- Agree to AVS Terms and Agreements
- Product testing with self-test checklists to ensure your product delivers a familiar Alexa experience to customers
- Alexa Built-in badge for compliance with security and testing requirements
- Details at: https://developer.amazon.com/alexa-voice-service/launch
Google Assistant
Google Assistant

- Virtual assistant powered by AI and developed by Google
- Available for numerous platforms, mobile and smart home devices
- Initial release 18 May 2016
- Written in C++
- Requires Google Home app on a smartphone to setup a smart speaker with Google Assistant
Google Assistant Features

- Multilingual support
- Six different voice options (including both male and female)
- Continued conversation for follow-up questions without repeating the activation word
- Voice match feature to setup up to 6 users of the smart speaker
- Google Duplex extension for accomplishing real-world tasks through natural conversations over the phone
Developer opportunities with Google Assistant

- Integration of Google Assistant in custom hardware devices using the **SDK**
- Extend the functionality of Google Assistant by developing software applications called **Actions**
Google Assistant SDK

- **Google Assistant Library** written in Python and supported on devices with `linux-armv7l` and `linux-x86_64` architectures

- **Google Assistant Service** for full control over the integration through API binding on all platforms supported by the modern open source high performance RPC framework gRPC
Compatibility and feature support

<table>
<thead>
<tr>
<th>Feature</th>
<th>Library</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported architectures</td>
<td>linux-armv7l and linux-x86_64</td>
<td>All gRPC platforms</td>
</tr>
<tr>
<td>Supported languages</td>
<td>Python</td>
<td>All gRPC languages</td>
</tr>
<tr>
<td>Hands-free activation (Ok Google)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Audio capture and playback</td>
<td>Built in</td>
<td>Reference code is provided</td>
</tr>
<tr>
<td>Conversation state management</td>
<td>Built in</td>
<td>Reference code is provided</td>
</tr>
<tr>
<td>Timers and alarms</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Playback of podcasts and news</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Broadcast voice messages</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Visual output (HTML5) of Assistant responses</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Google Smart Speakers

- **Google Home** - released on 4 November 2016
- **Google Home Mini** - announced on October 4, 2017, released on the market on October 19, 2017
- **Google Home Max** - announced on 4 October 2017, released on the market on 11 December 2017
- **Google Home Hub** - announced on 9 October 2018
3rd Party Devices with Google Assistant

- Panasonic GA10
- Sony LF-S50G
- TicHome Mini
- Polk Assist
- Hogar Milo
- LG ThinQ WK7
- JBL Link
- Lenovo Smart Display
- More...
Low cost hardware options using off-the-shelf components for proof of concept demo:

- Google Voice Kit for Raspberry Pi: https://aiyprojects.withgoogle.com/voice/
- OrangePi Zero Set 6 (includes a case and an expansion board with mic and audio input) + Speaker http://www.orangepi.org/orangepizero/
Create new project in Google Platform Console
Enable Google Assistant API
Create credentials for OAuth Client ID and download JSON file
On Debian distribution install Python:

```bash
export LC_ALL="en_US.UTF-8"
export LC_CTYPE="en_US.UTF-8"
sudo dpkg-reconfigure locales
sudo apt-get update
sudo apt-get install -y python3-dev python3-venv
python3 -m venv env
env/bin/python -m pip install --upgrade pip setuptools
```
Activate virtual Python environment and install Google Assistant SDK:
```
python -m pip install --upgrade google-assistant-library
```

Install and run Google authorization tool:
```
python -m pip install --upgrade google-auth-oauthlib[tool]
```

Start Google Assistant:
```
google-assistant-demo --device_model_id "my-speaker"
```
Create systemd service `/etc/systemd/system/google-assistant-demo.service` to launch Google Assistant automatically at startup:

```
[Unit]
Description=google assistant service
After=network.target ntpdate.service
[Service]
Type=simple
Environment=VIRTUAL_ENV=/home/pi/env/
Environment=PATH=/home/pi/env/bin:/usr/local/sbin:/usr/local
ExecStart=/home/pi/env/bin/google-assistant-demo --device_model_id "orangepi"
WorkingDirectory=/home/pi
StandardOutput=inherit
StandardError=inherit
Restart=always
User=pi
[Install]
WantedBy=multi-user.target
Alias=google-assistant.service
```
Enable the systemd service and start it automatically at boot:

```
sudo systemctl daemon-reload
sudo systemctl enable google-assistant-demo.service
sudo systemctl start google-assistant-demo.service
```
Launching Commercial Devices with Google Assistant on the Market

- Commercial products with Google Assistant requires certification by Google
- Get started by filling in a form with basic information about the technical specifications of the product: https://developers.google.com/assistant/sdk/interest
Mycroft
Mycroft

- Entirely open source project for a voice assistant
 https://mycroft.ai/

- Git repositories in GitHub
 https://github.com/MycroftAI

- Open source software available under Apache License 2.0

- Open source hardware available under CERN Open Hardware Licence
 https://github.com/MycroftAI/hardware-mycroft-mark-1

- Certified open source hardware UID US000049
Mycroft AI Inc.

- US start-up company from Kansas City founded in 2015 by Joshua Montgomery
- Initially products were crowdfunded through Kickstarter and IndieGoGo
- Currently is accepting investments at StartEngine
Mycroft Pulse

Mycroft Core, the Mycroft Artificial Intelligence platform
https://github.com/MycroftAI/mycroft-core

- Written in Python
- 2820 commits, 90 releases, 89 contributors
- 8 contributors with more than 100 commits

Skills, repository for sharing and collaboration for 3rd party Mycroft skills development
https://github.com/MycroftAI/mycroft-skills

- 965 commits, 65 contributors (as of 17 October)
Mycroft Features

- Officially available only in English, community support for other languages
- Supports extension of the functionality by developing software applications called skills
- Mycroft Skills Manager (msm) and a repository with 3rd party skills
- Optional device and account management system known as Mycroft Home
- Allows using devices without Mycroft Home service
Mycroft Wake Words

- Default wake words “Hey Mycroft”
- Support for custom wake words
- Precise - default wake word listener since March 2018, written in Python, available at GitHub under Apache License 2.0: https://github.com/MycroftAI/mycroft-precise
- PocketSphinx the previous default wake word listener, now available as an alternative in Mycroft, written in C, available at GitHub under BSD-like license: https://github.com/cmusphinx/pocketsphinx
Mycroft STT engines

The following Speech to Text (STT) engines are available:

- Google STT (default)
- IBM Watson Speech to Text (username and password required)
- wit.ai Speech to Text (wit.ai API key required)
- DeepSpeech (work in progress as part of the OpenSTT initiative in partnership with Mozilla)
DeepSpeech

- Open source Speech-to-Text (STT) engine developed by Mozilla
- Available at GitHub under Mozilla Public License 2.0
 https://github.com/mozilla/DeepSpeech
- Written in C++, Python and shell scripts, uses Google's TensorFlow to simplify the implementation
- 50 contributors, 1220 commits, 19 releases
Mycroft TTS engines

The following Text to Speech (TTS) engines are available:

- Mimic (default)
- eSpeak
- MaryTTS
- Google TTS
- FATTS
Mimic

- Fast, light-weight Text to Speech (TTS) engine developed by Mycroft.AI and VocaliD
- Based on Carnegie Mellon University's FLITE software
- Available at GitHub under BSD-like copyright (as FLITE): https://github.com/MycroftAI/mimic
- 348 commits, 6 releases, 14 contributors (as of 21 October)
- Written in C
- Works on GNU/Linux distributions, Mac OS X and MS Windows
Mycroft Devices

- Mycroft Mark 1 (crowdfunded in 2015, shipped in 2017)
- Mycroft Mark 2 (expected in December 2018)
- DIY smart speakers with Raspberry Pi 2 & 3 (expected support for 3 B+) with PiCroft GNU/Linux distribution based on Raspbian Jessie Lite
Showcases
Google Voice Kit for Raspberry Pi

- Do-it-yourself artificial intelligence voice for Raspberry Pi
 https://aiyprojects.withgoogle.com/voice/
- Two versions, the first was distributed free with the MagPi magazine
- Cardboard case
Google Voice Kit for Raspberry Pi
Raspberry Pi + Mic + Speaker

- Raspberry Pi
- Adafruit I2S MEMS Microphone Breakout – SPH0645LM4H
 https://www.adafruit.com/product/3421
- Adafruit I2S 3W Class D Amplifier Breakout – MAX98357A
 https://www.adafruit.com/product/3006
Orange Pi Zero Set6

- Orange Pi Zero with Allwinner H2 SoC and 512MB RAM
- Expansion board with audio input, mic, IR receiver and two additional USB ports
- Speaker
- Case
- 5V microUSB power supply
- Armbian GNU/Linux distribution
 https://www.armbian.com/orange-pi-zero/
Home Assistant

- Open-source home automation platform running on Python 3
- Perfect to run on a Raspberry Pi
- More than 950 components for integration with popular Internet of Things such as IKEA Trådfri, Philips Hue, Google Assistant, Alexa / Amazon Echo, Nest, KODI, etc.
- Started in 2013 by Paulus Schoutsen
- Huge community, more than 830 contributors
- Source code available at GitHub under Apache 2.0 license
- https://home-assistant.io/
Simple Voice Control with Alexa

- Home assistant is compatible with Alexa and Amazon Echo
- Basic integration using the Emulated Hue Bridge component of Home Assistant
- Emulated Hue Bridge allows non-Philips Hue devices to be controlled though with voice the built-in support of Amazon Echo

```yaml
emulated_hue:
  type: alexa
  expose_by_default: true
```
Simple Voice Control with Alexa

- Example voice commands for MQTT JSON Light component configured with name “ANA VI Light pHAT” in `configuration.yaml`:

 - Alexa, turn **ON** ANAVI Light pHAT
 - Alexa, turn **OFF** ANAVI Light pHAT
How Does it Work?

Raspberry Pi

MQTT client for controlling the RGB LED strip

Mosquitto MQTT Broker

Home Assistant

MQTT JSON Light

Emulated Hue Bridge

Cloud

User 1

User 2

User N

ANAVI Light pHAT

12V RGB LED strip

ELCE 2018, Comparison of Voice Assistant SDKs for Embedded Linux, Leon Anavi
Conclusions
Conclusions

- There is a huge demand on the market for integrating AI and voice assistants in end-consumer devices as well as for development of 3rd software applications and services for them.

- The market leaders Amazon and Google provide turn-key solutions for integration in embedded Linux devices but require difficult certifications for end-consumer devices.

- Mycroft is an entirely open source voice assistant that combines open source hardware with free and open source software.

- In practice all reviewed solutions require Internet connection to the cloud.
Thank You!

Useful links:
- https://www.youtube.com/watch?v=F5DixCPJYo8
- https://developers.google.com/actions/
- https://developers.google.com/assistant/sdk/
- https://www.youtube.com/watch?v=FBXRwu6hgy8
- https://mycroft.ai/
- https://www.armbian.com/