INDUSTRIALIZE DATA SCIENCE AND MACHINE LEARNING

AMILNE SLIMANE – SOLUTION ENGINEERING MANAGER APAC
AGENDA

01 TALENDF PRESENTATION
02 WHAT IS MACHINE LEARNING?
03 MACHINE LEARNING ALGORITHMS
04 TALENDF AND MACHINE LEARNING
05 DEMONSTRATION
Talend: A History of Innovation and Growth

Key Facts

- Founded in 2006
- 1000+ employees worldwide
- 10 countries
- 1700+ customers
- 3M+ open source downloads
- 500K+ registered users
- Gartner and Forrester leader in DI, Big Data and DQ
- Open Core Model

(Data Preparation)
(Metadata Management)

(Revenue Growth)
The Forrester Big Data Wave 2018
WHAT IS MACHINE LEARNING?
WILL THE SUN RISE TOMORROW?

- How does a machine learn that the sun will rise every morning?
- We are NOT going to tell it, we want it to LEARN
- The machine knows NOTHING about how the universe works
- So, how can it learn?
SO, HOW DOES THE MACHINE LEARN?

- It simply observes and records events
- On Day 1 it sees the sun rise, but it doesn’t know if it will rise tomorrow
- It uses the Bayesian interpretation of probability to work it out
- The probability the sun will rise increases each day. We just sum all the possibilities
- So, on Day 1, it will either rise or not, the probability is 0.5
- On Day 2 the probability, haven seen the sun rise once is 0.66
- At the end of the Week it is 0.857
- At the end of the Year it is 0.997

\[
P(\text{sun rises tomorrow} \mid \text{it has risen } k \text{ times previously}) = \frac{\int_0^1 p^{k+1} dp}{\int_0^1 p^k dp} = \frac{k + 1}{k + 2}
\]
3 MAIN TYPES OF MACHINE LEARNING

• Supervised Learning
 • A computer is presented with example inputs and desired outputs, and the goal is to learn a general rule that maps inputs to outputs

• Un-supervised Learning
 • No labels are given to the learning algorithm, leaving it on its own to find structure in its input. Unsupervised learning can be a goal in itself (discovering hidden patterns in data) or a means towards an end (feature learning)

• Reinforcement Learning
 • A computer program interacts with a dynamic environment in which it must perform a certain goal (such as driving a vehicle or playing a game against an opponent). The program is provided feedback in terms of rewards and punishments as it navigates its problem space
MACHINE LEARNING ALGORITHMS
MACHINE LEARNING ALGORITHMS

Group algorithms together into types

Lots of types, lots of algorithms

Deep Belief Networks (DBN)
Convolutional Neural Network (CNN)
Stacked Auto-Encoders
Random Forest
Gradient Boosting Machines (GBM)
Boosting
Bootstrapped Aggregation (Bagging)
AdaBoost
Stacked Generalization (Blending)
Gradient Boosted Regression Trees (GBRT)
Radial Basis Function Network (RBFN)

Deep Learning

Ensemble

Bayesian

Naive Bayes
Averaged One-Dependence Estimators (AODE)
Bayesian Belief Network (BBN)
Gaussian Naive Bayes
Multinomial Naive Bayes
Bayesian Network (BN)

Classification and Regression Tree (CART)
Iterative Dichotomiser 3 (ID3)
C4.5
C5.0

Chi-squared Automatic Interaction Detection (CHAID)
Decision Stump
Conditional Decision Trees
MS

Instance Based

k-Nearest Neighbour (KNN)
Learning Vector Quantization (LVQ)
Self-Organizing Map (SOM)
Locally Weighted Learning (LWL)

k-Means
k-Medians
Expectation Maximization
Hierarchical Clustering

Clustering

Regression

Linear Regression

Ordinary Least Squares Regression (OLSR)
Stepwise Regression
Multivariate Adaptive Regression Splines (MARS)
Locally Estimated Scatterplot Smoothing (LOESS)
Logistic Regression

Regularization

Linear Regression

Least Angle Regression (LARS)
Elastic Net

Least Absolute Shrinkage and Selection Operator (LASSO)

Rule System

C4.5
One Rule (OneR)
Zero Rule (ZeroR)

Repeated Incremental Pruning to Produce Error Reduction (RIPPER)

Dimensionality Reduction

Principal Component Analysis (PCA)
Partial Least Squares Regression (PLSR)
Sammon Mapping
Multidimensional Scaling (MDS)
Projections Pursuit
Principal Component Regression (PCR)
Partial Least Squares Discriminant Analysis
Mixture Discriminant Analysis (MDA)
Quadratic Discriminant Analysis (QDA)
Regularized Discriminant Analysis (RDA)
Flexible Discriminant Analysis (FDA)
Linear Discriminant Analysis (LDA)

Neural Networks

Perceptron
Back-Propagation
Hopfield Network
Ridge Regression

Machine Learning Algorithms
QUESTIONS ML CAN HELP ANSWER

Which products are likely to be bought together?
Collaborative filtering

Will an event happen in the future?
Classification

How much, what will be the number of...?
Regression

Who are my gold customers?
Clustering

What will be the price of this stock in a month?
Gradient boosted tree

Is fraud occurring?
Decision tree

Is that image a known intruder?
Support Vector Machine (supervised learning)
TALEND AND MACHINE LEARNING
WHY TALEND FOR MACHINE LEARNING?

• **Reduce** Machine Learning complexities using Talend

• Point and Click tools to **apply** various ML techniques
 • Classification
 • Clustering
 • Recommendation
 • Regression

• Leverage Spark for **scalability** and **performance**
DEMONSTRATION
Overview:

In this Demo you will see a simple version of making your website an Intelligent Application.

You will experience:

- Building a Spark Recommendation Model
- Setting up a new Kafka topic to help simulate live web traffic coming from Live web users browsing a retail web store.
- Most important you will see first-hand with Talend how you can take streaming data and turn it into real-time recommendations to help improve shopping cart sales.
BRIDGING THE GAP BETWEEN DATA SCIENCE & IT

Create/tune/train predictions, models, scores

Full access to data lake for modeling

Operationalize analytics

Continuous delivery

Shorten time for IT teams to deliver
OPERATIONALIZING THE MODEL

- Extract, Transform + Apply Machine Learning, Load
- Real-Time Processing using Spark Streaming
- Lambda Architecture (Speed + Batch Layer)
- Deploy On-Premise or In the Cloud
THANK YOU
Download the Talend Sandbox at https://www.talend.com/products/sandbox