Deep Learning Neural Network Acceleration at the Edge

Andrea Gallo
VP Segments and Strategic Initiatives

29-Aug-2018
Vancouver
Disclaimer

All information in this session is public.

No confidential information has been disclosed from private communication between Linaro and Linaro members.

URL’s to the original source are provided in each slide.
Why Deep Learning?
End-to-End Learning for Many Tasks
It’s complex!!!
From cloud to edge devices
From cloud to edge devices

Always online

Uplink bandwidth and traffic

Latency vs real time constraints

Privacy concerns
From cloud to edge devices
From cloud to edge devices
AI/ML Frameworks
TensorFlow and TensorFlow Lite

Developed in-house by the Google Brain team

- Started as DistBelief in 2011
- Evolved into TensorFlow with its first commit in November 2015
- V1.0.0 released on Feb 11, 2017
TensorFlow and TensorFlow Lite

Developed in-house by the Google Brain team

- Started as DistBelief in 2011
- Evolved into TensorFlow with its first commit in November 2015
- V1.0.0 released on Feb 11, 2017

TensorFlow can be built as

- TensorFlow for cloud and datacenters
- TensorFlow Lite for mobile devices
- TensorFlow.js for AI in web browsers
TensorFlow and TensorFlow Lite

Developed in-house by the Google Brain team
- Started as DistBelief in 2011
- Evolved into TensorFlow with its first commit in November 2015
- V1.0.0 released on Feb 11, 2017

TensorFlow can be built as
- TensorFlow for cloud and datacenters
- TensorFlow Lite for mobile devices
- TensorFlow.js for AI in web browsers

Support multiple accelerators
- CUDA and TPU
- Android NNAPI and NN HAL
- WebGL
TensorFlow and TensorFlow Lite

Developed in-house by the Google Brain team

- Started as DistBelief in 2011
- Evolved into TensorFlow with its first commit in November 2015
- V1.0.0 released on Feb 11, 2017

TensorFlow can be built as

- TensorFlow for cloud and datacenters → CUDA
- TensorFlow Lite for mobile devices → Android NNAPI and NN HAL
- TensorFlow.js for AI in web browsers → WebGL

Support multiple accelerators

- 31,713 commits
- 1,624 contributors
- 1,610,734 lines of code
- 456 years of effort
- 1st Commit Nov ‘15
From TensorFlow to TensorFlow Lite

TensorFlow Lite uses FlatBuffers
From TensorFlow to TensorFlow Lite

TensorFlow Lite uses **FlatBuffers**
TensorFlow 1st Commit in November 2015

Commits: Individual Commit

<table>
<thead>
<tr>
<th>Commit ID</th>
<th>41959ccb2d9d4c722fe8fc3351401d53bcf4900</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contributor:</td>
<td>Manjunath Kudlor</td>
</tr>
<tr>
<td>Date:</td>
<td>07-November-2015 at 00:27</td>
</tr>
<tr>
<td>Repository:</td>
<td>git://github.com/tensorflow/tensorflow.git master</td>
</tr>
<tr>
<td>Files Modified</td>
<td>1899</td>
</tr>
<tr>
<td>Lines Added:</td>
<td>343903</td>
</tr>
<tr>
<td>Lines Removed:</td>
<td>0</td>
</tr>
</tbody>
</table>

Changes by Language

<table>
<thead>
<tr>
<th>Language</th>
<th>Code Added</th>
<th>Code Removed</th>
<th>Comments Added</th>
<th>Comments Removed</th>
<th>Blanks Added</th>
<th>Blanks Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>C++</td>
<td>180966</td>
<td>0</td>
<td>40104</td>
<td>0</td>
<td>33693</td>
<td>0</td>
</tr>
<tr>
<td>Python</td>
<td>38122</td>
<td>0</td>
<td>15251</td>
<td>0</td>
<td>11904</td>
<td>0</td>
</tr>
<tr>
<td>HTML</td>
<td>16068</td>
<td>0</td>
<td>338</td>
<td>0</td>
<td>706</td>
<td>0</td>
</tr>
</tbody>
</table>
Manjunath Kudlur

Distributed Systems and Parallel Computing

Machine Intelligence
Caffe

- Made with expression, speed, and modularity in mind
- Developed by Berkeley AI Research (BAIR) and by community contributors
 - **Yangqing Jia** created the project during his PhD at UC Berkeley
 - Caffe is released under the BSD 2-Clause license
- Focus has been vision, but also handles sequences, reinforcement learning, speech + text
- Tools, reference models, demos, and recipes → [Caffe Zoo](#)
- Seamless switch between CPU and GPU

caffe.berkeleyvision.org github.com/BVLC/caffe [BAIR](http://www.bair.berkeley.edu)
Caffe2

Caffe2 improves Caffe 1.0 in a series of directions

- First-class support for large-scale distributed training
- Mobile deployment
- New hardware support (in addition to CPU and CUDA)
- Flexibility for future directions such as quantized computation
- Stress tested by the vast scale of Facebook applications
- Examples and pre-trained models available from the Caffe2 Zoo
- Running on mobile devices with Android and iOS
 - Step-by-step tutorial with camera demo
- Caffe1 models do not run with Caffe2
 - Converter tool available

3,678 commits
332 contributors
275,560 lines of code
73 years of effort
1st commit in June ‘15
Commits: Individual Commit

Commit ID: ac3e6a4d4103706864b336705bd59518f14a5186
Contributor: Yangqing Jia
Date: 25-June-2015 at 23:26
Repository: git://github.com/caffe2/caffe2.git master
Commit Comment: A clean init for Caffe2, removing my earlier hacky commits.

Changes by Language

<table>
<thead>
<tr>
<th>Language</th>
<th>Code Added</th>
<th>Code Removed</th>
<th>Comments Added</th>
<th>Comments Removed</th>
<th>Blanks Added</th>
<th>Blanks Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>C++</td>
<td>26581</td>
<td>0</td>
<td>7938</td>
<td>0</td>
<td>4404</td>
<td>0</td>
</tr>
<tr>
<td>Python</td>
<td>5071</td>
<td>0</td>
<td>2903</td>
<td>0</td>
<td>1243</td>
<td>0</td>
</tr>
<tr>
<td>CUDA</td>
<td>1616</td>
<td>0</td>
<td>127</td>
<td>0</td>
<td>166</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>498</td>
<td>0</td>
<td>58</td>
<td>0</td>
<td>44</td>
<td>0</td>
</tr>
<tr>
<td>HTML</td>
<td>117</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>CSS</td>
<td>96</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>Make</td>
<td>14</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>shell script</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
MXNet is a multi-language machine learning (ML) library to ease the development of ML algorithms, especially for deep neural networks. MXNet is computation and memory efficient and runs on various heterogeneous systems, ranging from mobile devices to distributed GPU clusters.

Currently, MXNet is supported by Intel, Dato, Baidu, Microsoft, Wolfram Research, and research institutions such as Carnegie Mellon, MIT, the University of Washington, and the Hong Kong University of Science and Technology.

Gluon API, examples, tutorials and pre-trained models from the Gluon model zoo.
mxnet 1st Commit in April 2015

Commit ID: ab64fe792f874dddb193c9828fd2cc3898f6bee3

Contributor: Mu Li
Date: 30-April-2015 at 16:21
Repository: git://github.com/dmlc/mxnet.git master
Commit Comment: Initial commit

Files Modified: 3
Lines Added: 0
Lines Removed: 0
mxnet 1st Commit in April 2015

Contributors: Mu Li

Activity on MXNet by Mu Li

All-time Commits: 393
12-Month Commits: 93
30-Day Commits: 3

Overall Kudo Rank: 1
First Commit: 30-Apr-2015
Last Commit: 16-Aug-2017

Names in SCM: Mu Li

Commit history:
Mu Li • 3rd

Principal Scientist at Amazon
Palo Alto, California

Connect

Amazon
Carnegie Mellon University
See contact info
25 connections
Deep Learning framework comparison

<table>
<thead>
<tr>
<th>General</th>
<th>MXNet</th>
<th>Caffe2</th>
<th>TensorFlow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Activity</td>
<td>Activity Not Available</td>
<td>High Activity</td>
<td>Activity Not Available</td>
</tr>
<tr>
<td>Open Hub Data Quality</td>
<td>Updated 12 months ago</td>
<td>Updated about 12 hours ago</td>
<td>Updated 4 months ago</td>
</tr>
<tr>
<td>Homepage</td>
<td>mxnet.rtfd.org</td>
<td>caffe2.ai</td>
<td>tensorflow.org</td>
</tr>
<tr>
<td>Estimated Cost</td>
<td>$4,859,026</td>
<td>$3,988,567</td>
<td>$25,066,443</td>
</tr>
</tbody>
</table>

All Time Statistics

<table>
<thead>
<tr>
<th>Contributors (All Time)</th>
<th>498 developers</th>
<th>332 developers</th>
<th>1624 developers</th>
</tr>
</thead>
<tbody>
<tr>
<td>View as graph</td>
<td>10686 commits</td>
<td>3678 commits</td>
<td>31713 commits</td>
</tr>
<tr>
<td>Initial Commit</td>
<td>over 3 years ago</td>
<td>about 3 years ago</td>
<td>almost 3 years ago</td>
</tr>
</tbody>
</table>
Number of Commits who made changes to the project source code each month
Observations

● Each cloud player has its own deep learning framework
● Each AI framework has its own entire ecosystem of formats, tools, model store
● Each AI framework represents a significant investment
● Scaling and acceleration are fundamental to performance
NN accelerators and software solutions
Arm Mali-G72

Arm Mali-G72 is the second generation Bifrost-based GPU for High Performance products. Benefitting from advanced technologies such as claued shaders and full system coherency, Mali-G72 adds increased tile buffer memory supporting up to 16 x Multi-Sample Anti-Aliasing at minimal performance cost. Arithmetic optimizations tailored to complex Machine Learning and High Fidelity Mobile Gaming use cases provide 25% higher energy efficiency, 20% better performance density and 40% greater overall performance than devices based on previous generation Bifrost GPU.

Arm ML processor

The Arm Machine Learning processor is an optimized, ground-up design for machine learning acceleration, targeting mobile and adjacent markets:

- optimized fixed-function engines for best-in-class performance
- additional programmable layer engines support the execution of non-convolution layers, and the implementation of selected primitives and operators

The network control unit manages the overall execution and traversal of the network and the DMA moves data in and out of the main memory. Onboard memory allows central storage for weights and feature maps.

Arm OD processor

- Detects object in real time with Full HD at 60fps.
- Object sizes from 50x60 pixels to full screen.
- Virtually unlimited objects detected per frame.
- Detailed people model provides rich metadata and allows detection of direction, trajectory, pose and gesture.
- Advanced software running on accompanying application processor allows for higher-level behaviour to be determined, including sophisticated inter-frame tracking.
- Additional software libraries enable higher-level, on-device features, such as face recognition.

Arm NN

Arm NN SDK is a set of open-source Linux software and tools that enables machine learning workloads on power-efficient devices. It provides a bridge between existing neural network frameworks and power-efficient Arm Cortex CPUs, Arm Mali GPUs or the Arm Machine Learning processor.

Arm NN SDK utilizes the Compute Library to target programmable cores, such as Cortex-A CPUs and Mali GPUs, as efficiently as possible. It includes support for the Arm Machine Learning processor and, via CMSIS-NN, support for Cortex-M CPUs.

Arm NN

LEADING COLLABORATION IN THE ARM ECOSYSTEM

HiSilicon

- 99 operators
- Caffe, TensorFlow, TensorFlow Lite, Huawei HiAI SDK, Android NN
- Converter tools from AI models to serialized offline model

https://connect.linaro.org/resources/hkg18/hkg18-302/
LEADING COLLABORATION IN THE ARM ECOSYSTEM

MediaTek Deep Learning Platform

Object Recognition ADAS Speech Recognition IoT

torch Caffe KALDI others...

MediaTek Deep Learning SDK

Multi-cluster CPU GPU DSP Imagiq™ ISP

MCSI Interconnect

An ecosystem of 3rd parties providing NN IP and tools
Observations

- Complete offload vs heterogenous computing
- Shared memory vs sub-system memories and DMA
- Fixed operators and software fallback
- Graph split vs cost of context switch
- Serialized models and converter tools

- Forked and accelerated inference engine for each NN IP and each framework
 → high total cost of ownership
 → delayed rebases and updates
 → delayed security fixes
Call to Action
Linaro Collaboration

Members fund Linaro and drive work through engineering steering committees.

Member and Linaro engineers collaborate to develop work once, for all.

Linaro delivers output to members, into open source projects, and into the community.

Now ~25 members, up from 6 in 2010.

Over 300 OSS engineers globally, including 140 Linaro staff.

Core Members
- arm
- HILSilicon
- Qualcomm

Club Members
- Google
- socionext
- STMicroelectronics

Group Members
- Texas Instruments
- UNISOC
- ZTE

Community Members
- CAVIUM
- Cisco
- Comcast
- Cypress
- Enea
- Fujitsu
- HX Technology
- Kujing
- Kylin
- NOKIA
- NXP
- Samsung
- Xilinx
- IBM
- Linux Foundation
Linaro works Upstream

Delivering high value collaboration

Top 5 company contributor to Linux and Zephyr kernels

Contributor to >70 open source projects; many maintained by Linaro engineers

<table>
<thead>
<tr>
<th>Company</th>
<th>4.8-4.13 Changesets</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Intel</td>
<td>10,833</td>
<td>13.1%</td>
</tr>
<tr>
<td>2 Red Hat</td>
<td>5,965</td>
<td>7.2%</td>
</tr>
<tr>
<td>3 Linaro</td>
<td>4,636</td>
<td>5.6%</td>
</tr>
</tbody>
</table>

Source: 2017 Linux Kernel Development Report, Linux Foundation
Open Neural Network Exchange (ONNX) provides an open source format for AI models. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Initial focus on inference.
Open Neural Network Exchange (ONNX)

An open source format for AI models

An extensible computation graph model

Definitions of built-in operators and standard data types

Initial focus on inference
ONNX Interface for Framework Integration (ONNXIFI)
Standardized interface for neural network inference on special-purpose accelerators, CPUs, GPUs, DSPs, and FPGAs
Dynamic discovery of available backends and supported ONNX operators
Initialize and deinitialize backends
Specify memory locations and metadata
Run an ONNX graph
ONNXIFI API Call Flow

App

onnxGetNumBackends
onnxGetBackendInfo
onnxInitBackend

Convert operators in a model graph to ONNX, and check which of the operators can be offloaded to the backend

Graph

onnxGetBackendCompatibility

onnxInitGraph

onnxSetGraphIO
onnxRunGraph
onnxReleaseGraph
onnxReleaseBackend
Android NN API

https://developer.android.com/ndk/guides/neuralnetworks/
Areas of Collaboration

- Common model description format and APIs to the back end
- Common optimized runtime inference engine for Arm-based SoC
- Dynamic plug-in framework to support multiple 3rd party NPU, CPU, GPU, DSP
- CI loops on reference development boards to measure accuracy, performance speed up and regression testing
Discussions started last March

AI/ML Resources from HKG18
- HKG18-417 - OpenCL support by NNVM & TVM
- HKG18-413 - AI and Machine Learning BoF
- HKG18-405 - Accelerating Neural Networks with...
- HKG18-312 - CMSIS-NN
- HKG18-306 - Overview of Qualcomm SNPE
- HKG18-304 - Scalable AI server
- HKG18-302 - Huawei HiAI : Unlock The Future
- HKG18-200K2 - Keynote: Accelerating AI from Cloud to Edge
Join us at the

AI and Neural Networks on Arm Summit

At Linaro Connect Vancouver 2018
Wednesday 19 September - Hyatt Regency Vancouver, 655 Burrard Street, V6C 2R7
$45 to attend the summit only